Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (3): 2210002.doi: 10.3866/PKU.WHXB202210002
• ARTICLE • Previous Articles Next Articles
Mingxu Zhang1, Qisen Zhou1, Xinyi Mei1, Jingxuan Chen1, Junming Qiu1, Xiuzhi Li2, Shuang Li1, Mubing Yu1, Chaochao Qin2, Xiaoliang Zhang1,*()
Received:
2022-10-05
Accepted:
2022-11-24
Published:
2022-12-02
Contact:
Xiaoliang Zhang
E-mail:xiaoliang.zhang@buaa.edu.cn
Supported by:
Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells[J]. Acta Phys. -Chim. Sin. 2023, 39(3), 2210002. doi: 10.3866/PKU.WHXB202210002
1 |
Chen, J.; Jia, D.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. Energy Environ. Sci. 2021, 14, 224.
doi: 10.1039/d0ee02900a |
2 |
Zhang, X.; Hägglund, C.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1253.
doi: 10.1002/adfm.201503338 |
3 |
Zheng, S.; Chen, J.; Johansson, E. M. J.; Zhang, X. I. Science 2020, 23, 101753.
doi: 10.1016/j.isci.2020.101753 |
4 |
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180.
doi: 10.1038/nature04855 |
5 |
Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Nat. Nanotechnol. 2011, 6, 348.
doi: 10.1038/nnano.2011.46 |
6 |
Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C.; Yang, Z.; Saidaminov, M. I.; et al Nat. Photonics 2020, 14, 459.
doi: 10.1038/s41566-020-0635-8 |
7 |
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138.
doi: 10.1038/nmat1299 |
8 |
Mei, X.; Jia, D.; Chen, J.; Zheng, S.; Zhang, X. Nano Today 2022, 43, 101449.
doi: 10.1016/j.nantod.2022.101449 |
9 |
Whitworth, G. L.; Dalmases, M.; Taghipour, N.; Konstantatos, G. Nat. Photonics 2021, 15, 738.
doi: 10.1038/s41566-021-00878-9 |
10 | Wang, C.; Zhang, C.; Li, R.; Chen, Q.; Qian, L.; Chen, L. Acta Phys. -Chim. Sin. 2022, 38, 2104030. |
王成, 张弛, 黎瑞锋, 陈琪, 钱磊, 陈立桅 物理化学学报, 2022, 38, 2104030.
doi: 10.3866/PKU.WHXB202104030 |
|
11 |
Choi, M. J.; Garcia de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M.; Sun, B.; Biondi, M.; et al Nat. Commun. 2020, 11, 103.
doi: 10.1038/s41467-019-13437-2 |
12 |
Jia, D.; Chen, J.; Zheng, S.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J.; Karis, O.; Rensmo, H.; Johansson, E. M. J.; et al Adv. Energy Mater. 2019, 9, 1902809.
doi: 10.1002/aenm.201902809 |
13 |
Chen, J.; Zheng, S.; Jia, D.; Liu, W.; Andruszkiewicz, A.; Qin, C.; Yu, M.; Liu, J.; Johansson, E. M. J.; Zhang, X. ACS Energy Lett. 2021, 6, 1970.
doi: 10.1021/acsenergylett.1c00475 |
14 |
Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J.; et al Adv. Energy Mater. 2018, 8, 1702049.
doi: 10.1002/aenm.201702049 |
15 |
Zhang, X.; Cappel, U. B.; Jia, D.; Zhou, Q.; Du, J.; Sloboda, T.; Svanström, S.; Johansson, F. O. L.; Lindblad, A.; Giangrisostomi, E.; et al Chem. Mater. 2019, 31, 4081.
doi: 10.1021/acs.chemmater.9b00742 |
16 |
Zheng, S.; Wang, Y.; Jia, D.; Tian, L.; Chen, J.; Shan, L.; Dong, L.; Zhang, X. Adv. Mater. Interfaces 2021, 8, 2100489.
doi: 10.1002/admi.202100489 |
17 |
Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Energy Environ. Sci. 2018, 11, 354.
doi: 10.1039/c7ee02772a |
18 |
Zhang, X.; Zhang, J.; Liu, J.; Johansson, E. M. J. Nanoscale 2015, 7, 11520.
doi: 10.1039/c5nr02617b |
19 |
Zhang, X.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1921.
doi: 10.1002/adfm.201504038 |
20 |
Chen, J.; Jia, D.; Qiu, J.; Zhuang, R.; Hua, Y.; Zhang, X. Nano Energy 2022, 96, 107140.
doi: 10.1016/j.nanoen.2022.107140 |
21 |
Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X. Joule 2022, 6, 1632.
doi: 10.1016/j.joule.2022.05.007 |
22 |
Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530.
doi: 10.1126/science.1209845 |
23 |
Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873.
doi: 10.1021/cr900289f |
24 | Han, B. Acta Phys. -Chim. Sin. 2020, 36, 1911025. |
韩布兴 物理化学学报, 2020, 36, 1911025.
doi: 10.3866/PKU.WHXB201911025 |
|
25 |
Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C. ACS Nano 2014, 8, 614.
doi: 10.1021/nn405236k |
26 |
Yuan, M.; Kemp, K. W.; Thon, S. M.; Kim, J. Y.; Chou, K. W.; Amassian, A.; Sargent, E. H. Adv. Mater. 2014, 26, 3513.
doi: 10.1002/adma.201305912 |
27 |
Wang, Y.; Lu, K.; Han, L.; Liu, Z.; Shi, G.; Fang, H.; Chen, S.; Wu, T.; Yang, F.; Gu, M.; et al Adv. Mater. 2018, 30, 1704871.
doi: 10.1002/adma.201704871 |
28 |
Wang, Y.; Liu, Z.; Huo, N.; Li, F.; Gu, M.; Ling, X.; Zhang, Y.; Lu, K.; Han, L.; Fang, H.; et al Nat. Commun. 2019, 10, 5136.
doi: 10.1038/s41467-019-13158-6 |
29 |
Xia, Y.; Liu, S.; Wang, K.; Yang, X.; Lian, L.; Zhang, Z.; He, J.; Liang, G.; Wang, S.; Tan, M.; et al Adv. Funct. Mater. 2019, 30, 1907379.
doi: 10.1002/adfm.201907379 |
30 |
Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.; Sargent, E. H. ACS Nano 2012, 6, 8448.
doi: 10.1021/nn303364d |
31 |
Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278.
doi: 10.1021/ja400948t |
32 |
Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Science 2014, 344, 1380.
doi: 10.1126/science.1252727 |
33 |
Chen, W.; Guo, R.; Tang, H.; Wienhold, K. S.; Li, N.; Jiang, Z.; Tang, J.; Jiang, X.; Kreuzer, L. P.; Liu, H.; et al Energy Environ. Sci. 2021, 14, 3420.
doi: 10.1039/d1ee00832c |
34 |
Shi, G.; Wang, H.; Zhang, Y.; Cheng, C.; Zhai, T.; Chen, B.; Liu, X.; Jono, R.; Mao, X.; Liu, Y.; et al Nat. Commun. 2021, 12, 4381.
doi: 10.1038/s41467-021-24614-7 |
35 |
Zhang, Z.; Sung, J.; Toolan, D. T. W.; Han, S.; Pandya, R.; Weir, M. P.; Xiao, J.; Dowland, S.; Liu, M.; Ryan, A. J.; et al Nat. Mater. 2022, 21, 533.
doi: 10.1038/s41563-022-01204-6 |
36 |
Sánchez-Godoy, H. E.; Erazo, E. A.; Gualdrón-Reyes, A. F.; Khan, A. H.; Agouram, S.; Barea, E. M.; Rodriguez, R. A.; Zarazúa, I.; Ortiz, P.; Cortés, M. T.; et al Adv. Energy Mater. 2020, 10, 2002422.
doi: 10.1002/aenm.202002422 |
37 |
Tavakoli, M. M.; Dastjerdi, H. T.; Yadav, P.; Prochowicz, D.; Si, H.; Tavakoli, R. Adv. Funct. Mater. 2021, 31, 2010623.
doi: 10.1002/adfm.202010623 |
38 |
Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; et al Adv. Mater. 2020, 32, 2004985.
doi: 10.1002/adma.202004985 |
39 |
Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al Joule 2020, 4, 1542.
doi: 10.1016/j.joule.2020.05.011 |
40 |
Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. Nat. Energy 2016, 1, 16035.
doi: 10.1038/Nenergy.2016.35 |
41 |
Kagan, C. R.; Murray, C. B. Nat. Nanotechnol. 2015, 10, 1013.
doi: 10.1038/nnano.2015.247 |
42 |
Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; ten Brink, G. H.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. ACS Nano 2015, 9, 11951.
doi: 10.1021/acsnano.5b04547 |
43 |
Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M. Y.; Weidman, M. C.; Li, H.; Jean, J.; Bulović, V.; Willard, A. P.; et al Matter 2019, 1, 250.
doi: 10.1016/j.matt.2019.05.015 |
44 |
Liu, M.; Voznyy, O.; Sabatini, R.; Garcia de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A. R.; et al Nat. Mater. 2017, 16, 258.
doi: 10.1038/nmat4800 |
45 |
Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H.; Quintero-Bermudez, R.; et al Adv. Mater. 2017, 29, 1703627.
doi: 10.1002/adma.201703627 |
46 |
Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. ACS Energy Lett. 2021, 6, 1596.
doi: 10.1021/acsenergylett.1c00291 |
47 |
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424.
doi: 10.1126/science.aad4424 |
48 |
Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Garcia de Arquer, F. P.; et al Nat. Nanotechnol. 2018, 13, 456.
doi: 10.1038/s41565-018-0117-z |
49 |
Qiu, J.; Zhou, Q.; Jia, D.; Wang, Y.; Li, S.; Zhang, X. J. Mater. Chem. A 2022, 10, 1821.
doi: 10.1039/d1ta09756c |
50 |
Gao, J.; Johnson, J. C. ACS Nano 2012, 6, 3292.
doi: 10.1021/nn300707d |
51 |
Kroupa, D. M.; Voros, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Nat. Commun. 2017, 8, 15257.
doi: 10.1038/ncomms15257 |
52 |
Hu, L.; Lei, Q.; Guan, X.; Patterson, R.; Yuan, J.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X.; et al Adv. Sci. 2021, 8, 2003138.
doi: 10.1002/advs.202003138 |
53 |
Wang, Y.; Mei, X.; Qiu, J.; Zhou, Q.; Jia, D.; Yu, M.; Liu, J.; Zhang, X. J. Phys. Chem. Lett. 2021, 12, 11330.
doi: 10.1021/acs.jpclett.1c03213 |
54 |
Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L.; et al Adv. Funct. Mater. 2021, 31, 2104457.
doi: 10.1002/adfm.202104457 |
55 |
Wang, R.; Wu, X.; Xu, K.; Zhou, W.; Shang, Y.; Tang, H.; Chen, H.; Ning, Z. Adv. Mater. 2018, 30, 1704882.
doi: 10.1002/adma.201704882 |
56 |
Xu, K.; Zhou, W.; Ning, Z. Small 2020, 16, 2003397.
doi: 10.1002/smll.202003397 |
[1] | Guodong SUN,Xi KANG,Shan JIN,Xiaowu LI,Daqiao HU,Shuxin WANG,Manzhou ZHU. Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-dimethylbenzenethiol) [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 799-804. |
[2] | Wei-Xin HUANG,Kun QIAN,Zong-Fang WU,Shi-Long CHEN. Structure-Sensitivity of Au Catalysis [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 48-60. |
[3] | Hui-Yun WEI,Guo-Shuai WANG,Hui-Jue WU,Yan-Hong LUO,Dong-Mei LI,Qing-Bo MENG. Progress in Quantum Dot-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 201-213. |
[4] | Li WANG,Hong SHI,Hui-Hui LIU,Xiang SHAO,Kai WU. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 183-194. |
[5] | NI Ting, ZOU Fan, JIANG Yu-Rong, YANG Sheng-Yi. To Improve the Efficiency of Bulk Heterojunction Organic Solar Cells by Incorporating CdSe/ZnS Quantum Dots [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 453-459. |
[6] | LI Wen-Zhe, WANG Li-Duo, GAO Rui, DONG Hao-Peng, NIU Guang-Da, GUO Xu-Dong, QIU Yong. Transforming Organic Ligands into a ZnS Protective Layer through the S2- Intermediate State in ex situ CdSe Quantum Dot Devices [J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2345-2353. |
[7] | Wang Xu-Xu;Fu Xian-Zhi. Reaction of Surface Hydroxyl Group of MCM41 with Tetraneopentylzirconium [J]. Acta Phys. -Chim. Sin., 2001, 17(02): 165-168. |
[8] | Ji Wei-Jie; Shen Shi-Kong; Li Shu-Ben; Wang Hong-Li. Dispersion State of Ferric Oxide on ZrO2 and its Influence on the Catalytic Performance [J]. Acta Phys. -Chim. Sin., 1993, 9(03): 311-318. |
[9] | Zhu Yong-Fa. AES Chemical Shift and Application on Surface Chemistry [J]. Acta Phys. -Chim. Sin., 1993, 9(02): 211-217. |
[10] | Meng Qing-Jin; Sun Shou-Heng; Zhu Dan-Hong; Chen Wei-Bing; P.H.Rieger. Chemical Exchange of Ligand PR″3 of (RC2R)Co(CO)(PR″3)2 IN SOLUTION——TRIPLE-JUMP KINETIC MODEL [J]. Acta Phys. -Chim. Sin., 1991, 7(05): 518-523. |
[11] | Zhao Liang-Zhong; Guo Zhong-Cheng; Liang Zhen-Hua; Hu Yu-Xiu; Liu Han-Fan. Variations in the Elemental Concentration in Surface Region of the YBCO Films and Interactions of the Films with Substrate in Heating Process Studied by Angular Deprndent XPS [J]. Acta Phys. -Chim. Sin., 1991, 7(03): 305-310. |
|