Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (9): 2212065.doi: 10.3866/PKU.WHXB202212065
• REVIEW • Previous Articles Next Articles
Yucui Hou1, Zhuosen He2, Shuhang Ren2, Weize Wu2,*()
Received:
2022-12-31
Accepted:
2023-02-13
Published:
2023-02-24
Contact:
Weize Wu
E-mail:wzwu@mail.buct.edu.cn
Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2212065. doi: 10.3866/PKU.WHXB202212065
1 |
Bang S. S. ; Johnston D. Arch. Environ. Contam. Toxicol. 1998, 35, 580.
doi: 10.1007/s002449900419 |
2 |
Boddien A. ; Mellmann D. ; Gartner F. ; Jackstell R. ; Jungle H. ; Dyson P. J. ; Laurenczy G. ; Ludwig R. ; Beller M. Science 2011, 333 (6050), 1733.
doi: 10.1126/science.1206613 |
3 |
Himeda Y. Eur. J. Inorg. Chem. 2007, 25, 3927.
doi: 10.1002/ejic.200700494 |
4 |
Himeda Y. Green Chem. 2009, 11, 2018.
doi: 10.1039/B914442K |
5 |
Tanaka R. ; Yamashita M. ; Nozaki K. J. Am. Chem. Soc. 2009, 131, 14168.
doi: 10.1021/ja903574e |
6 |
Wang Z. ; Yan J. ; Ping Y. ; Wang H. ; Zheng W. ; Jiang Q. Angew. Chem. Int. Ed. 2013, 52, 4406.
doi: 10.1002/anie.201301009 |
7 |
Zell T. ; Butschke B. ; Ben-David Y. ; Milstein D. Chem. Eur. J. 2013, 19, 8068.
doi: 10.1002/chem.201301383 |
8 |
Ida T. ; Nishida M. ; Hori Y. J. Phys. Chem. A 2019, 123, 9579.
doi: 10.1021/acs.jpca.9b05994 |
9 |
Eppinger J. R. ; Huang K.-W. ACS Energy Lett. 2017, 2, 188.
doi: 10.1021/acsenergylett.6b00574 |
10 |
Gu N. ; Sun S. ; Cheng J. Tetrahedron Lett. 2018, 59 (11), 1069.
doi: 10.1016/j.tetlet.2018.02.006 |
11 |
Rees N. V. ; Compton R. G. J. Solid State Electrochem. 2011, 15 (10), 2095.
doi: 10.1007/s10008-011-1398-4 |
12 |
Rice C. ; Ha S. ; Masel R. I. ; Waszczuk P. ; Wieckowski A. ; Barnard T. J. Power Sources 2002, 111, 83.
doi: 10.1016/s1464-2859(03)00330-4 |
13 |
Weber M. ; Wang J. T. ; Wasmus S. ; Savinell R. F. J. Electrochem. Soc. 1996, 143 (7), L158.
doi: 10.1149/1.1836961 |
14 | Formic acid market-growth, trends, covid-19 impact, and forecasts (2023–2028). https://www.mordorintelligence.com/industry-reports/formic-acid-market (accessed on Jan 23, 2023). |
15 | SunSirs: Commodity data, Formic acid. http://jiasuan.100ppi.com/ (accessed 23 January, 2023). |
生意社大宗商品数据网, 甲酸. http://jiasuan.100ppi.com/(accessed Jan 23, 2023). | |
16 |
Zhang J. Z. ; Sun M. ; Liu X. ; Han Y. Catal. Today 2014, 233 (15), 77.
doi: 10.1016/j.cattod.2013.12.010 |
17 | Zhang M. ; Zhou Q. P. ; Shen Z. ; Zhou X. F. ; Zhang Y. L. ; Chen J. J. Anhui Agricult. Sci. 2012, 40 (1), 310. |
张敏; 周婧斐; 沈峥; 周雪飞; 张亚雷; 陈杰. 安徽农业科学, 2012, 40 (1), 310. | |
18 |
Chen X. ; Liu Y. ; Wu J. W. Mol. Catal. 2019, 483, 110716.
doi: 10.1016/j.mcat.2019.110716 |
19 |
Teong S. P. ; Li X. K. ; Zhang Y. G. Green Chem. 2019, 21, 5753.
doi: 10.1039/c9gc02445j |
20 |
Cheng L. Y. ; Liu H. ; Cui Y. M. ; Xue N. H. ; Ding W. P. J. Energy Chem. 2014, 23, 43.
doi: 10.1016/S2095-4956(14)60116-9 |
21 |
Jin F. M. ; Enomoto H. Energy Environ. Sci. 2011, 4, 382.
doi: 10.1039/c004268d |
22 |
Yan X. Y. ; Jin F. M. ; Tohji K. ; Kishita A. ; Enomoto H. J. AIChE J. 2010, 56, 2727.
doi: 10.1002/aic.11833 |
23 |
Jin F. M. ; Yun J. ; Li G. M. ; Kishita A. ; Tohji K. ; Enomoto H. Green Chem. 2008, 10, 612.
doi: 10.1039/b802076k |
24 |
Wang C. ; Chen X. ; Qi M. ; Wu J. N. ; Gözaydın G. ; Yan N. ; Zhong H. ; Ming J. F. Green Chem. 2019, 21, 6089.
doi: 10.1039/c9gc02201e |
25 |
Song X. ; Ding N. ; Zai Y. ; Zeng X. ; Sun Y. ; Tang X. ; Lei T. ; Lin L. J. Taiwan Inst. Chem. Eng. 2019, 96, 315.
doi: 10.1016/j.jtice.2018.11.025 |
26 |
Takagaki A. ; Obata W. ; Ishihara T. ChemistryOpen 2021, 10, 954.
doi: 10.1002/open.202100074 |
27 |
Gao X. Y. ; Chen X. ; Zhang J. G. ; Guo W. M. ; Jin F. M. ; Yan N. ACS Sustain. Chem. Eng. 2016, 4, 3912.
doi: 10.1021/acssuschemeng.6b00767 |
28 |
Liu Q. ; Zhou D. ; Li Z. ; Luo W. ; Guo C. Chin. J. Chem. 2017, 35, 1063.
doi: 10.1002/cjoc.201600465 |
29 |
Shen F. ; Smith Jr R. L. ; Li J. ; Guo H. ; Zhang X. ; Qi X. Green Chem. 2021, 23, 1536.
doi: 10.1039/D0GC04263C |
30 | Wen L. Y. ; Min E. Z. Petrochem. Technol. 2000, 29 (1), 49. |
温朗友; 闵恩泽. 石油化工, 2000, 29 (1), 49. | |
31 |
Lu T. ; Hou Y. C. ; Wu W. Z. ; Niu M. G. ; Wang Y. P. Fuel Process. Technol. 2018, 171, 133.
doi: 10.1016/j.fuproc.2017.11.010 |
32 |
Zhong J. ; Pérez-Ramírez J. ; Yan N. Green Chem. 2021, 23, 18.
doi: 10.1039/d0gc03190a |
33 |
Khenkin A. M. ; Neumann R. J. Am. Chem. Soc. 2008, 130, 14474.
doi: 10.1021/ja8063233 |
34 |
Wölfel R. ; Taccardi N. ; Bösmann A. ; Wasserscheid P. Green Chem. 2011, 13, 2759.
doi: 10.1039/c1gc15434f |
35 |
Albert J. ; Wölfel R. ; Bosmann A. ; Wasserscheid P. Energy Environ. Sci. 2012, 5, 7956.
doi: 10.1039/c2ee21428h |
36 |
Li J. ; Ding D. J. ; Deng L. ; Guo Q. X. ; Fu Y. ChemSusChem 2012, 5, 1313.
doi: 10.1002/cssc.201100466 |
37 |
Albert J. ; Lüders D. ; Bösmann A. ; Guldi D. M. ; Wasserscheid P. Green Chem. 2014, 16, 226.
doi: 10.1039/c3gc41320a |
38 |
Kozhevnikov I. V. ; Matveev K. I. Appl. Catal. 1983, 5, 135.
doi: 10.1016/0166-9834(83)80128-6 |
39 |
Reichert J. ; Albert J. ACS Sustain. Chem. Eng. 2017, 5, 7383.
doi: 10.1021/acssuschemeng.7b01723 |
40 |
Lu T. ; Niu M. G. ; Hou Y. C. ; Wu W. Z. ; Ren S. H. ; Yang F. Green Chem. 2016, 18, 4725.
doi: 10.1039/c6gc01271j |
41 |
Voß D. ; Pickel H. ; Albert J. ACS Sustain. Chem. Eng. 2019, 7, 9754.
doi: 10.1021/acssuschemeng.8b05095 |
42 |
Xu J. L. ; Zhang H. Y. ; Zhao Y. F. ; Yang Z. Z. ; Yu B. ; Xu H. J. ; Liu Z. M. Green Chem. 2014, 16, 4931.
doi: 10.1039/C4GC01252F |
43 |
Li K. X. ; Bai L. L. ; Amaniampong P. N. ; Jia X. L. ; Lee J.-M. ; Yang Y. H. ChemSusChem 2014, 7, 2670.
doi: 10.1002/cssc.201402157 |
44 |
Bukowski A. ; Esau D. ; Said A. A. R. ; Brandt-Talbot A. ; Albert J. ChemPlusChem 2020, 85, 373.
doi: 10.1002/cplu.202000025 |
45 |
Bukowski A. ; Schnepf K. ; Wesinger S. ; Brandt-Talbot A. ; Albert J. ACS Sustain. Chem. Eng. 2022, 10, 8474.
doi: 10.1021/acssuschemeng.2c01550 |
46 |
Niu M. G. ; Hou Y. C. ; Ren S. H. ; Wu W. Z. ; Marsh K. N. Green Chem. 2015, 17, 453.
doi: 10.1039/c4gc01440e |
47 |
Shen F. ; Li Y. ; Qin X. ; Guo H. ; Li J. ; Yang J. ; Ding Y. Renewable Energy 2022, 185, 139.
doi: 10.1016/j.renene.2021.12.043 |
48 |
Gromov N. V. ; Medvedeva T. B. ; Lukoyanov I. A. ; Panchenko V. N. ; Timofeeva M. N. ; Taran O. P. ; Parmon V. N. Catalysts 2022, 12, 1252.
doi: 10.3390/catal12101252 |
49 |
Crans D. C. ; Smee J. J. ; Gaidamauskas E. ; Yang L. Q. Chem. Rev. 2004, 104, 849.
doi: 10.1002/chin.200420288 |
50 |
Sadoc A. ; Messaoudi S. ; Furet E. ; Gautier R. ; Fur E. L. ; Pollès L. l. ; Pivan J.-Y. Inorg. Chem. 2007, 46, 4835.
doi: 10.1021/ic0614519 |
51 |
Wang W. H. ; Niu M. G. ; Hou Y. C. ; Wu W. Z. ; Liu Z. Y. ; Liu Q. Y. ; Ren S. H. ; Marsh K. N. Green Chem. 2014, 16, 2614.
doi: 10.1039/c4gc00145a |
52 |
Lu T. ; Hou Y. C. ; Wu W. Z. ; Niu M. G. ; Li W. ; Ren S. H. Fuel Process. Technol. 2018, 173, 197.
doi: 10.1016/j.fuproc.2018.02.001 |
53 |
Müller N. ; Romero R. ; Grandón H. c. ; Segura C. Energy Fuels 2016, 30, 10417.
doi: 10.1021/acs.energyfuels.6b01345 |
54 |
Tang Z. ; Deng W. ; Wang Y. ; Zhu E. ; Wan X. ; Zhang Q. ; Wang Y. ChemSusChem 2014, 7, 1557.
doi: 10.1002/cssc.v7.6/issuetoc |
55 |
Yang F. ; Hou Y. C. ; Niu M. G. ; Wu W. Z. ; Liu Z. Y. Fuel 2017, 202, 129.
doi: 10.1016/j.fuel.2017.04.023 |
56 |
Hou Y. C. ; Lin Z. Q. ; Niu M. G. ; Ren S. H. ; Wu W. Z. ACS Omega 2018, 3, 14910.
doi: 10.1021/acsomega.8b01409 |
57 |
Albert J. ; Mendt M. ; Mozer M. ; Voß D. Appl. Catal. A-Gen. 2019, 570, 262.
doi: 10.1016/j.apcata.2018.10.030 |
58 |
Yang W. S. ; Du X. ; Liu W. ; Wang Z. W. ; Dai H. Q. ; Deng Y. L. Ind. Eng. Chem. Res. 2019, 58, 22996.
doi: 10.1021/acs.iecr.9b05311 |
59 |
Lu T. ; Hou Y. C. ; Wu W. Z. ; Niu M. G. ; Ren S. H. ; Lin Z. Q. ; Ramani V. K. Fuel 2018, 216, 572.
doi: 10.1016/j.fuel.2017.12.044 |
60 |
Ponce S. ; Trabold M. ; Drochner A. ; Albert J. ; Etzold B. J. M. Chem. Eng. J. 2019, 369, 443.
doi: 10.1016/j.cej.2019.03.103 |
61 |
Poller M. J. ; Bönisch S. ; Bertleff B. ; Raabe J. C. ; Görling A. ; Albert J. Chem. Eng. Sci. 2022, 264, 118143.
doi: 10.1016/j.ces.2022.118143 |
62 | Zhou H. ; Jing Y. X. ; Wang Y. Q. Acta Phys. -Chim. Sin. 2022, 38, 2203016. |
周浩; 景亚轩; 王艳芹. 物理化学学报, 2022, 38, 2203016.
doi: 10.3866/PKU.WHXB202203016 |
|
63 | Wang W. ; Wang Y. ; Zhan Z. ; Tan T. ; Deng W. ; Zhang Q. ; Wang Y. Acta Phys. -Chim. Sin. 2022, 38, 2205032. |
王伟; 王瑶; 占自祥; 谭天; 邓卫平; 张庆红; 王野. 物理化学学报, 2022, 38, 2205032.
doi: 10.3866/PKU.WHXB2022205032 |
|
64 |
Hao R. ; Guan W. X. ; Liu F. ; Zhang L. L. ; Wang A. Q. Acta Phys. -Chim. Sin. 2022, 38 (10), 2205027.
doi: 10.3866/PKU.WHXB202205027 |
郝睿; 关伟翔; 刘菲; 张磊磊; 王爱琴. 物理化学学报, 2022, 38 (10), 2205027.
doi: 10.3866/PKU.WHXB202205027 |
|
65 |
Bikash Sarma B. ; Neumann R. Nat. Commun. 2014, 5, 4621.
doi: 10.1038/ncomms5621 |
66 |
Niu M. G. ; Hou Y. C. ; Wu W. Z. ; Ren S. H. ; Yang R. Phys. Chem. Chem. Phys. 2018, 20, 17942.
doi: 10.1039/c8cp02352b |
67 |
Niu M. G. ; Hou Y. C. ; Ren S. H. ; Wang W. H. ; Zheng Q. T. ; Wu W. Z. Green Chem. 2015, 17, 335.
doi: 10.1039/c4gc00970c |
68 |
Reichert J. ; Brunner B. ; Jess A. ; Wasserscheid P. ; Albert J. Energy Environ. Sci. 2015, 8, 2985.
doi: 10.1039/c5ee01706h |
69 |
Maerten S. ; Kumpidet C. ; Voß D. ; Bukowski A. ; Wasserscheid P. ; Albert J. Green Chem. 2020, 22, 4311.
doi: 10.1039/d0gc01169j |
70 |
Wesinger S. ; Mendt M. ; Albert J. ChemCatChem 2021, 13, 3662.
doi: 10.1002/cctc.202100632 |
71 |
Guo Y.-J. ; Li S.-J. ; Sun Y.-L. ; Wang L. ; Zhang W.-M. ; Zhang P. ; Lan Y. ; Li Y. Green Chem. 2021, 23, 7041.
doi: 10.1039/d1gc02265b |
72 |
Zhang P. ; Guo Y.-J. ; Chen J. B. ; Zhao Y.-R. ; Chang J. ; Junge H. ; Beller M. ; Li Y. Nat. Cat. 2018, 1, 332.
doi: 10.1038/s41929-018-0062-0 |
73 |
Deuss P. J. ; Barta K. ; de Vries J. G. Catal. Sci. Technol. 2014, 4, 1174.
doi: 10.1039/c3cy01058a |
74 |
Mehdi H. ; Fábos V. ; Tuba R. ; Bodor A. ; Mika L. T. ; Horváth I. T. Top Catal. 2008, 48, 49.
doi: 10.1007/s11244-008-9047-6 |
75 |
Albert J. ; Wasserscheid P. Green Chem. 2015, 17, 5164.
doi: 10.1039/c5gc01474c |
76 |
Gromov N. V. ; Medvedeva T. B. ; Sorokina K. N. ; Samoylova Y. V. ; Rodikova Y. A. ; Parmon V. N. ACS Sustain. Chem. Eng. 2020, 8, 18947.
doi: 10.1021/acssuschemeng.0c06364 |
77 |
Voß D. ; Kahl M. ; Albert J. ACS Sustain. Chem. Eng. 2020, 8, 10444.
doi: 10.1021/acssuschemeng.0c02426 |
78 |
Niu M. G. ; Hou Y. C. ; Ren S. H. ; Wu W. Z. Chin. Sci. Bull. 2015, 60 (16), 1434.
doi: 10.1360/N972014-01247 |
79 |
Caiti M. ; Padovan D. ; Hammond C. ACS Catal. 2019, 9, 9188.
doi: 10.1021/acscatal.9b01977 |
80 |
Zou L. ; Zhang Q. ; Huang Y. ; Luo X. ; Liang Z. Ind. Eng. Chem. Res. 2019, 58, 22984.
doi: 10.1021/acs.iecr.9b05308 |
81 |
Xu L. ; Nie R. F. ; Xu H. F. ; Chen X. J. ; Li Y. C. ; Lu X. Y. Ind. Eng. Chem. Res. 2020, 59 (7), 2754.
doi: 10.1021/acs.iecr.9b05726 |
82 |
Al-Naji M. ; Popova M. ; Chen Z. ; Wilde N. ; Glaser R. ACS Sustain. Chem. Eng. 2020, 8, 393.
doi: 10.1021/acssuschemeng.9b05546 |
83 |
Gromov N. V. ; Taran O. P. ; Delidovich I. V. ; Pestunov A. V. ; Rodikova Y. A. ; Yatsenko D. A. ; Zhizhina E. G. ; Parmon V. N. Catal. Today 2016, 278, 74.
doi: 10.1016/j.cattod.2016.03.030 |
[1] | Ruijie Zhu, Leilei Kang, Lin Li, Xiaoli Pan, Hua Wang, Yang Su, Guangyi Li, Hongkui Cheng, Rengui Li, Xiao Yan Liu, Aiqin Wang. Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303003-. |
[2] | Chaoqiong Zhu, Ziming Cai, Peizhong Feng, Weichen Zhang, Kezhen Hui, Xiuhua Cao, Zhenxiao Fu, Xiaohui Wang. Reliability Mechanisms of the Ultrathin-Layered BaTiO3-Based BME MLCC [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304015-. |
[3] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[4] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[7] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[8] | Huixian Han, Lan Chen, Jiancheng Zhao, Haitao Yu, Yang Wang, Helian Yan, Yingxiong Wang, Zhimin Xue, Tiancheng Mu. Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212043-0. |
[9] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[10] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[11] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[12] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[13] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
[14] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[15] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
|