Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (6): 1906006.doi: 10.3866/PKU.WHXB201906006
Special Issue: Thermal Analysis Kinetics and Thermokinetics
• Article • Previous Articles Next Articles
Zhaobi Xing1,Zhijun Guo1,Yuwei Zhang1,Junling Liu1,Yujie Wang2,*(),Guangyue Bai1,*(
)
Received:
2019-06-03
Accepted:
2019-06-19
Published:
2019-12-18
Contact:
Yujie Wang,Guangyue Bai
E-mail:yujiewang2001@163.com;baiguangyue@htu.cn
Supported by:
Zhaobi Xing,Zhijun Guo,Yuwei Zhang,Junling Liu,Yujie Wang,Guangyue Bai. Regulation of SDS on the Surface Charge Density of SB3-12 Micelles and Its Effect on Drug Dissolution[J].Acta Physico-Chimica Sinica, 2020, 36(6): 1906006.
Table 1
The parameters for the micellization of the mixed SB3-12/SDS in PBS."
xSB3-12 | PBS/(mmol?L?1) | CMC/(mmol?L?1) | ΔHele/(kJ?mol?1) | ΔHmic/(kJ?mol?1) |
1 | 0 | 2.70 ± 0.05 | – | 2.73 ± 0.05 |
1 | 10.0 | 2.71 ± 0.05 | – | 2.73 ± 0.05 |
0.9 | 10.0 | 0.53 ± 0.02 | ?1.46 ± 0.05 | 0.26 ± 0.02 |
0.8 | 10.0 | 0.48 ± 0.02 | ?2.79 ± 0.05 | ?1.79 ± 0.03 |
0.7 | 10.0 | 0.46 ± 0.02 | ?4.35 ± 0.05 | ?4.07 ± 0.05 |
0.6 | 10.0 | 0.45 ± 0.02 | – | ?5.24 ± 0.05 |
0.5 | 0 | 1.03 ± 0.05 | – | ?2.82 ± 0.05 |
0.5 | 5 | 0.69 ± 0.02 | – | ?4.77 ± 0.05 |
0.5 | 10 | 0.46 ± 0.02 | – | ?5.74 ± 0.05 |
0.5 | 15 | 0.41 ± 0.02 | – | ?6.10 ± 0.05 |
0.5 | 20 | 0.39 ± 0.02 | – | ?6.33 ± 0.05 |
0.5 | 25 | 0.37 ± 0.02 | – | ?6.45 ± 0.05 |
Fig 3
Variation of the ΔHobs with CT for the mixed SB3-12/SDS systems at different PBS concentrations. The inset shows the resulted curves CMC0.5 vs CPBS (■) and ΔHmic vs CPBS (□). The symbols in the main frame represent concentrations of PBS (mmol·L?1) : (●)water, () 5.0, () 10.0, () 15.0, () 20.0, () 25.0, respectively. T = 298.15 K. xSB3-12 = 0.5"
Fig 4
Variation of the ΔHobs with CT for titrating the mixed SB3-12/SDS solution into the rutin solution. Inset exhibits the enlarged profiles for titrating the solutions of xSB3-12 = 1 (square) and 0.8 (triangle) into PBS (solid symbol) and buffered rutin (open symbol). xSB3-12: (□) 1.0, () 0.9, () 0.8, () 0.7, (?) 0.6, (?) 0.5; PBS: 10 mmol·L?1, pH 7.2; C0Rutin = 0.154 mmol·L?1; T = 298.15 K."
Table 2
The parameters for the micellization of the mixed SB3-12/SDS systems in the presence of Rutin a."
xSB3-12 | PBS/(mmol?L?1) | CMC/(mmol?L?1) | ΔHele/(kJ?mol?1) | ΔHmic/(kJ?mol?1) |
1 | 10 | 2.87 ± 0.05 | – | 2.70 ± 0.05 |
0.9 | 10.0 | 0.47 ± 0.02 | ?3.12 ± 0.05 | ?0.37 ± 0.02 |
0.8 | 10.0 | 0.43 ± 0.02 | ?4.79 ± 0.05 | ?2.20 ± 0.05 |
0.7 | 10.0 | 0.42 ± 0.02 | ?5.93 ± 0.05 | ?4.24 ± 0.05 |
0.6 | 10.0 | 0.44 ± 0.02 | ?6.75 ± 0.05 | ?6.17 ± 0.05 |
0.5 | 5 | 0.56 ± 0.02 | ?5.92 ± 0.05 | ?5.67 ± 0.05 |
0.5 | 10 | 0.45 ± 0.02 | ?7.10 ± 0.05 | ?6.57 ± 0.05 |
0.5 | 15 | 0.45 ± 0.02 | ?6.70 ± 0.05 | ?6.67 ± 0.05 |
0.5 | 20 | 0.40 ± 0.02 | ?7.51 ± 0.06 | ?7.26 ± 0.06 |
0.5 | 25 | 0.42 ± 0.02 | ?8.45 ± 0.06 | ?8.20 ± 0.06 |
Fig 7
UV-Vis spectra of rutin in PBS, SB3-12, mixed SB3-12/SDS and SDS solutions in the arrow direction. The Insets show the partially enlarged spectra at xSB3-12 = 0.8 in various total concentrations increasing in the arrow direction and in 30 mmol·L?1 SDS (scatter points). The concentration of: SB3-12, 8.3 mmol·L?1; SDS, 30 mmol·L?1; SB3-12/SDS, CT = 0-8.3 mmol·L?1 (xSB3-12 = 0.8), PBS, 10 mmol·L?1 (pH 7.2)."
1 |
Bhat P. A. ; Rather G. M. ; Dar A. A. J. Phys. Chem. B 2009, 113, 997.
doi: 10.1021/jp807229c |
2 |
Han C. H. ; Geng P. P. ; Guo Y. ; Chen X. X. ; Guo X. D. ; Zhang J. H. ; Liu J. ; Wei X. L. Acta Phys. -Chim. Sin. 2016, 32, 863.
doi: 10.3866/PKU.WHXB201601051 |
韩传红; 耿培培; 郭严; 陈肖肖; 郭晓冬; 张军红; 刘杰; 魏西莲. 物理化学学报, 2016, 32 (4), 863.
doi: 10.3866/PKU.WHXB201601051 |
|
3 |
Wang J. ; Ding X. ; Guo X. Adv. Colloid Interface Sci. 2019, 269, 187.
doi: 10.1016/j.cis.2019.04.004 |
4 |
Srivastava A. ; Uchiyama H. ; Wada Y. ; Hatanaka Y. ; Shirakawa Y. ; Kadota K. ; Tozuka Y. J. Mol. Liq. 2019, 277, 349.
doi: 10.1016/j.molliq.2018.12.070 |
5 |
Drummond C. J. ; Fong C. Curr. Opi. Colloid Interface Sci. 2000, 4, 449.
doi: 10.1016/S1359-0294(00)00020-0 |
6 |
Xie H. J. ; Liu C. C. ; Sun Q. ; Gu Q. ; Lei Q. F. ; Fang W. J. Acta Phys. -Chim. Sin. 2016, 32, 2951.
doi: 10.3866/PKU.WHXB201609231 |
谢湖均; 刘程程; 孙强; 顾青; 雷群芳; 方文军. 物理化学学报, 2016, 32, 2951.
doi: 10.3866/PKU.WHXB201609231 |
|
7 |
Luo S. Q. ; Wang M. N. ; Zhao W. W. ; Wang Y. L. Acta Phys. -Chim. Sin. 2019, 35, 766.
doi: 10.3866/PKU.WHXB201809038 |
罗思琪; 王美娜; 赵微微; 王毅琳. 物理化学学报, 2019, 35, 766.
doi: 10.3866/PKU.WHXB201809038 |
|
8 |
Wydro P. ; Paluch M. J. Colloid Interface Sci. 2005, 286, 387.
doi: 10.1016/j.jcis.2004.12.039 |
9 |
Lee N. M. ; Lee B. H. J. Chem. Thermodyn. 2016, 95, 15.
doi: 10.1016/j.jct.2015.11.018 |
10 |
Li F. ; Li G. Z. ; Chen J. B. Colloids Surf. A: Physicochem. Eng. Aspects 1998, 145, 167.
doi: 10.1016/S0927-7757(98)00543-3 |
11 |
Muñoz M. ; Rodríguez A. ; Graciani M. M. ; Moyá M. L. Langmuir 2004, 20, 10858.
doi: 10.1021/la048247n |
12 |
Mohamad-Aziz S. N. ; Mishra P. ; Zularisam A. W. ; Sakinah A. M. M. J. Mol. Liq. 2019, 286, 110882.
doi: 10.1016/j.molliq.2019.110882 |
13 |
Li J. ; Han Y. ; Qu G. M. ; Cheng J. C. ; Xue C. L. ; Gao X. ; Sun T. ; Ding W. Colloids Surf. A 2017, 531, 73.
doi: 10.1016/j.colsurfa.2017.07.088 |
14 |
Lou P. X. ; Wang Y. J. ; Bai G. Y. ; Fan C. Y. ; Wang Y. L. Acta Phys. -Chim. Sin. 2013, 29, 1401.
doi: 10.3866/PKU.WHXB201304282 |
娄朋晓; 王玉洁; 白光月; 范朝英; 王毅琳. 物理化学学报, 2013, 29, 1401.
doi: 10.3866/PKU.WHXB201304282 |
|
15 |
Wang Y. ; Marques E. F. J. Mol. Liq. 2008, 142, 136.
doi: 10.1016/j.molliq.2008.06.001 |
16 |
Chua L. S. J. Ethnopharmacology 2013, 150, 805.
doi: 10.1016/j.jep.2013.10.036 |
17 |
Gullόn B. ; Lú-Chau T. A. ; Moreira M. T. ; Lema J. M. ; Eibes G. Trends Food Sci. Technol. 2017, 67, 220.
doi: 10.1016/j.tifs.2017.07.008 |
18 |
De Oliveira I. R. W. Z. ; Fernandes S. C. ; Vieira I. C. J. Pharm. Biomed. Anal. 2006, 41, 366.
doi: 10.1016/j.jpba.2005.12.019 |
19 |
Chat O. A. ; Najar M. H. ; Dar A. A. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 436, 343.
doi: 10.1016/j.colsurfa.2013.06.035 |
20 |
Guo R. ; Wei P. ; Liu W. Y. J. Pharm. Biomed. Anal. 2007, 43, 1580.
doi: 10.1016/j.jpba.2006.11.029 |
21 |
Guo R. ; Wei P. Microchim. Acta 2008, 161, 233.
doi: 10.1007/s00604-007-0888-7 |
22 |
Moridani M. Y. ; Galati G. ; O'Brien P. J. Biol. Interact. 2002, 139, 251.
doi: 10.1016/S0009-2797(02)00005-4 |
23 |
Makris D. P. ; Rossiter J. T. J. Agric. Food Chem. 2000, 48, 3830.
doi: 10.1021/jf0001280 |
24 |
Lukáč M. ; Prokipčák I. ; Lacko I. ; Devínsky F. Eur. J. Pharmaceut. Sci. 2011, 44, 194.
doi: 10.1016/j.ejps.2011.07.011 |
25 |
Bai G. Y. ; Nichifor M. ; Bastos M. J. Phys. Chem. B 2010, 114, 16236.
doi: 10.1021/jp1071555 |
26 |
Liu W. Y. ; Guo R. J. Colloid Interface Sci. 2006, 302, 625.
doi: 10.1016/j.jcis.2006.06.045 |
27 |
Liu W. Y. ; Guo R. Colloids Surf. A: Physicochem. Eng. Aspects 2006, 274, 192.
doi: 10.1016/j.colsurfa.2005.09.009 |
28 |
Khonkarn R. ; Mankhetkorn S. ; Hennink W. E. ; Okonogi S. Eur. J. Pharmaceut. Biopharmaceut. 2011, 79, 268.
doi: 10.1016/j.ejpb.2011.04.011 |
29 |
Chat O. A. ; Najar M. H. ; Mir M. A. ; Rather G. M. ; Dar A. A. J. Colloid Interface Sci. 2011, 355, 140.
doi: 10.1016/j.jcis.2010.11.044 |
30 |
Zhou H. B. ; Wang X. Y. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 481, 31.
doi: 10.1016/j.colsurfa.2015.04.023 |
31 |
Bai G. Y. ; Liu J. L. ; Wang J. X. ; Wang Y. J. ; Li Y. N. ; Zhao Y. ; Yao M. H. Acta Phys. -Chim. Sin. 2017, 33, 976.
doi: 10.3866/PKU.WHXB201702089 |
白光月; 刘君玲; 王九霞; 王玉洁; 李艳娜; 赵扬; 姚美焕. 物理化学学报, 2017, 33, 976.
doi: 10.3866/PKU.WHXB201702089 |
|
32 |
Loh W. ; Brinatti C. ; Tam K. C. Biochim. Biophys. Acta 2016, 1860, 999.
doi: 10.1016/j.bbagen.2015.10.003 |
33 |
Jovanovic S. V. ; Steeken S. ; Tosic M. ; Marjanovic B. ; Simic M. G. J. Am. Chem. Soc. 1994, 116, 4846.
doi: 10.1021/ja00090a032 |
34 |
Buchweitz M. ; Kroon P. A. ; Rich G. T. ; Wilde P. J. Food Chem. 2016, 211, 356.
doi: 10.1016/j.foodchem.2016.05.034 |
35 |
Wang T. Z. ; Mao S. Z. ; Miao X. J. ; Zhao S. ; Yu J. Y. ; Du Y. R. J. Colloid Interface Sci. 2001, 241, 465.
doi: 10.1006/jcis.2001.7744 |
36 |
He L. ; Qin S. ; Chang T. ; Sun Y. ; Gao X. Catal. Sci. Technol. 2013, 3, 1102.
doi: 10.1039/c2cy20714a |
37 |
Nguyen T. A. ; Liu B. ; Zhao J. ; Thomas D. S. ; Hook J. M. Food Chem. 2013, 136, 186.
doi: 10.1016/j.foodchem.2012.07.104 |
38 |
Slimestad R. ; Torskangerpoll K. ; Nateland H. S. ; Johannessen T. ; Giske N. H. J. Food Comp. Anal. 2005, 18, 61.
doi: 10.1016/j.jfca.2003.12.003 |
[1] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[4] | Yuqi Wang, Miaocheng Zhang, Wei Xu, Xinyi Shen, Fei Gao, Jiale Zhu, Xiang Wan, Xiaojuan Lian, Jianguang Xu, Yi Tong. Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1907076-. |
[5] | Yuming Li, Haichao Liu. Selective Hydrogenolysis of Glycerol to 1, 3-Propanediol over Supported Platinum-Tungsten Oxide Catalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2207014-. |
[6] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[7] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[8] | Jin-Liang Lin, Yamin Zhang, Hao-Li Zhang. Novel Electrostatic Effects in Single-Molecule Devices [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2005010-. |
[9] | Haifeng Que, Huaning Jiang, Xingguo Wang, Pengbo Zhai, Lingjia Meng, Peng Zhang, Yongji Gong. Utilization of the van der Waals Gap of 2D Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010051-. |
[10] | Miao Wang, Hongning Zheng, Fei Xu. Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911039-. |
[11] | Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2002021-. |
[12] | Wen Xie,Lianjiao Zhou,Juan Xu,Qinglian Guo,Fenglei Jiang,Yi Liu. Advances in Biothermochemistry and Thermokinetics [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905051-. |
[13] | Fenfen Wang, Peng Wang, Hongyao Niu, Yingfeng Yu, Pingchuan Sun. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1912016-. |
[14] | Junyan Xiao, Limin Qi. Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910001-. |
[15] | Hanxiao Wang, Lifei Xu, Minghua Liu. Supramolecular Gel Based on Amphiphilic Quinoxaline: Chirality Inversion and Chiroptical Switch with Multiple Stimuli-Responsiveness [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910036-. |
|