Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009074.doi: 10.3866/PKU.WHXB202009074
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Bingyan Xu1, Ying Zhang1, Yecan Pi2, Qi Shao2, Xiaoqing Huang1,*()
Received:
2020-09-23
Accepted:
2020-10-26
Published:
2020-10-30
Contact:
Xiaoqing Huang
E-mail:hxq006@xmu.edu.cn
About author:
Xiaoqing Huang, Email:hxq006@xmu.edu.cnSupported by:
Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2009074. doi: 10.3866/PKU.WHXB202009074
"
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec−1) | Ref. | |
Ni-MOFs | AB & Ni-MOF(1:1) | NF | 1 mol∙L−1 | 263 | 65 | |
AB & Ni-MOF(1:1) | GC | 1 mol∙L−1 | 379 | 77 | ||
AB & Ni-MOF(1:1) | FTO | 1 mol∙L−1 | 282 | 66 | ||
Ni-MOF (BTC) | CP | 1 mol∙L−1 | 346 | 64 | ||
Ni-MOF | NF | 1 mol∙L−1 | 320 | 123 | ||
Pt-NC/Ni-MOF | GC | 1 mol∙L−1 | 292 | |||
3D Graphene/Ni-MOF | GC | 0.1 mol∙L−1 | 370 | 91 | ||
Ni-MOF derived oxides/hydroxides/carbonaceous materials | Ni-BDC/Ni(OH)2 | GC | 1 mol∙L−1 | 320 | 41 | |
0.6% (w) Fe2O3@Ni-MOF-74 | CP | 1 mol∙L−1 | 264 | 48 | ||
2D Ni-MOF-250 | NF | 1 mol∙L−1 | 250 (at 50 mA∙cm–2) | 89 | ||
NiO/C@NiFe-LDH | GC | 1 mol∙L−1 | 299 | 45 | ||
NiO | GC | 1 mol∙L−1 | 430 | 81 | ||
Ni(OH)2 | GC | 1 mol∙L−1 | 360 | 111 | ||
Ni@NC | NF | 1 mol∙L−1 | 280 | 45 | ||
NF@Ni/C | NF | 1 mol∙L−1 | 265 | 54 | ||
CNH-D-Ni-MOF | CFP | 1 mol∙L−1 | 320 | 85 | ||
CNH-D-Ni-MOF-400 | CFP | 1 mol∙L−1 | 120 | 75 | ||
Ni@NiO/N-C | GC | 1 mol∙L−1 | 390 | 100 | ||
Ni-MOF derived phosphates/sulfides | Ni-P | GC | 1 mol∙L−1 | 300 | 64 | |
Ni2P/rGO | NF | 1 mol∙L−1 | 250 | 62 | ||
NGO/Ni7S6 | GC | 0.1 mol∙L−1 | 380 | 45 | ||
NiS@N/S-C | CFP | 1 mol∙L−1 | 417 | 48 | ||
Ni-BDC@NiS (12 h) | NF | 1 mol∙L−1 | 330 (at 20 mA∙cm–2) | 62 | ||
Ni-Ni3S2@carbon | GC | 1 mol∙L−1 | 285 | 56 |
"
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec− | Ref. | |
NiFe-MOF | NiFe-MOF-74 | NF | 1 mol∙L−1 | 223 | 72 | |
FeNi-DOBDC-(Fe/Ni 3:1) | GC | 1 mol∙L−1 | 270 (at 50 mA∙cm−2) | 49 | ||
MIL-100(FeNi) | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 30 | ||
FeNi3-BTC | NF | 1 mol∙L−1 | 236 | 49 | ||
Fe1Ni4-HHTP NWAs | CC | 1 mol∙L−1 | 213 | 96 | ||
Fe2Ni-MIL-88B | NF | 1 mol∙L−1 | 222 | 42 | ||
Fe0.1-Ni-MOF/NF | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 70 | ||
NiFe-MOF/FeCH-NF | NF | 1 mol∙L−1 | 200 | 51 | ||
NiFe-NFF | NF | 1 mol∙L−1 | 250 | 39 | ||
Fe0.38Ni0.62-MOF | CC | 1 mol∙L−1 | 190 | 58 | ||
N-Fe-MOF NSs | GC | 1 mol∙L−1 | 221 | 56 | ||
MFN-MOF (2:1)/NF | NF | 1 mol∙L−1 | 235 (at 50 mA∙cm−2) | 55 | ||
Fe2Ni-MIL-101 | NF | 1 mol∙L−1 | 237 (at 20 mA∙cm−2) | 44 | ||
FeNi@CNF | GC | 1 mol∙L−1 | 356 | 63 | ||
NiFe-MOF derived oxides/hydroxides/carbonaceous materials | Fe-Ni-Ox | GC | 0.1 mol∙L−1 | 584 | 72 | |
NiFe2O4 | NF | 1 mol∙L−1 | 293 | 98 | ||
FeNi3-Fe3O4 NPs/MOF-CNT | GC | 1 mol∙L−1 | 234 | 37 | ||
FeNi@N-CNT | GC | 1 mol∙L−1 | 300 | 48 | ||
Fe-Ni@NC-CNTs | NF | 1 mol∙L−1 | 274 | 45.5 | ||
NiFe-NCs | CFP | 1 mol∙L−1 | 271 | 48 | ||
Ni0.5Fe0.5-HP | NF | 1 mol∙L−1 | 280 | 79 | ||
FeNi/NiFe2O4@NC | GC | 1 mol∙L−1 | 316 | 60 | ||
NiFe@NC | GC | 1 mol∙L−1 | 360 | 60 | ||
NiFe-MOF derived phosphates/sulfides | Fe-Ni-P/rGO-400 | GC | 1 mol∙L−1 | 240 | 63 | |
(NixFe1−x)2P nanocubes | GC | 1 mol∙L−1 | 290 | 44 | ||
Ni-Fe-O-P | GC | 1 mol∙L−1 | 227 | 50 | ||
Ni-Fe-O-B | GC | 1 mol∙L−1 | 243 | 53 | ||
Ni-Fe-O-S | GC | 1 mol∙L−1 | 272 | 70 | ||
NiCo-MOF | NiCo-UMOFNs | GC | 1 mol∙L−1 | 250 | 42 | |
CTGU-10c2 | GC | 1 mol∙L−1 | 240 | 58 | ||
AuNPs@CoNi-MOF | GC | 1 mol∙L−1 | 283 | 83 | ||
M2-(BDC)2TED@CF | CF | 1 mol∙L−1 | 260 | 76 | ||
NiCo-MOF derived materials | NixCo3−xO4/NF | NF | 1 mol∙L−1 | 287 | 88 | |
NCMC | CFP | 1 mol∙L−1 | 290 | 73 | ||
NiCo alloy@C/NixCo1−xO/NF | NF | 1 mol∙L−1 | 300 (at 100 mA∙cm−2) | 106 | ||
CoxNi1−x@CoyNi1−yO@C | GC | 0.1 mol∙L−1 | 126 | |||
CoNi3C/Ni@C | GC | 1 mol∙L−1 | 325 | 68 | ||
NiCo-0.8@N-CNFs-800 | GC | 0.1 mol∙L−1 | 380 | 78 | ||
Co4Ni1P NTs | GC | 1 mol∙L−1 | 245 | 61 | ||
Ni1.4Co0.6P/NCNHMs | 1 mol∙L−1 | 320 | 54.5 | |||
NixCoy-P | NF | 1 mol∙L−1 | 300 (at 35 mA∙cm−2) | 71 | ||
Ni1Co4S@C-1000 | GC | 1 mol∙L−1 | 64 | |||
Ni-Co-S HPNA | CC | 1 mol∙L−1 | 270 | 56 | ||
Co/Ni@C | GC | 0.1 mol∙L−1 | 410 | 101 | ||
Ni-doped CoS2/CFP | CFP | 1 mol∙L−1 | 270 | 79 | ||
Other bimetallic Ni-MOFs and their derivatives | NiCu-MOFNs/NF | NF | 1 mol∙L−1 | 309 (at 100 mA∙cm−2) | 48 | |
Ni/Ni2P/Mo2C@C | GC | 1 mol∙L−1 | 368 | 75 | ||
Ni-Cu@Cu-Ni-MOF | CP | 1 mol∙L−1 | 640 | 98 | ||
Pt-Ni@PCN920 | NF | 1 mol∙L−1 | 59 | |||
UiO-66-NH2-Ni@G | GC | 1 mol∙L−1 | 370 | 45 | ||
Trimetal Ni-MOF and their derivatives | Fe/Ni2.4/Co0.4-MIL-53 | GC | 1 mol∙L−1 | 219 | ||
Co2.36Fe0.19Ni0.45-btca | NF | 1 mol∙L−1 | 292 | 73 | ||
NiCo/Fe3O4/MOF-74 | GC | 1 mol∙L−1 | 238 | 29 | ||
FeCo0.5Ni0.5-LDH | Cu foil | 1 mol∙L−1 | 248 | 38 | ||
NCF-MOF | NF | 0.1 mol∙L−1 | 480 (at 30 mA∙cm−2) | 49 | ||
Ni3S2@MIL-53(NiFeCo)/NF | NF | 1 mol∙L−1 | 236 (at 50 mA∙cm−2) | 15 |
1 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45 (9), 2603.
doi: 10.1039/C5CS00838G |
2 |
Dresselhaus M. S. ; Thomas I. L. Nature 2001, 414 (6861), 332.
doi: 10.1038/35104599 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488 (7411), 294.
doi: 10.1038/nature11475 |
4 |
Kibsgaard J. ; Chorkendorff I. Nat. Energy 2019, 4 (6), 430.
doi: 10.1038/s41560-019-0407-1 |
5 |
McCrory C. C. L. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977.
doi: 10.1021/ja407115p |
6 |
Dang S. ; Zhu Q. Nat. Rev. Mater. 2018, 3 (1), 17075.
doi: 10.1038/natrevmats.2017.75 |
7 | Chang J. ; Xiao Y. ; Luo Z. ; Ge J. ; Liu C. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556. |
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291 |
|
8 |
Wang H. F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49 (5), 1414.
doi: 10.1039/c9cs00906j |
9 |
Zhu B. ; Liang Z. ; Xia D. ; Zou R. Energy Storage Mater. 2019, 23, 757.
doi: 10.1016/j.ensm.2019.05.022 |
10 |
Wang X. ; Li B. ; Wu Y. P. ; Tsamis A. ; Yu H. G. ; Liu S. ; Zhao J. ; Li Y. S. ; Li D. S. Inorg. Chem. 2020, 59 (7), 4764.
doi: 10.1021/acs.inorgchem.0c00024 |
11 |
Dong Y. ; Oloman C. W. ; Gyenge E. L. ; Su J. ; Chen L. Nanoscale 2020, 12 (18), 9924.
doi: 10.1039/d0nr02187c |
12 |
Han L. ; Dong S. ; Wang E. Adv. Mater. 2016, 28 (42), 9266.
doi: 10.1002/adma.201602270 |
13 |
Gao R. ; Yan D. Adv. Energy Mater. 2020, 10 (11), 1.
doi: 10.1002/aenm.201900954 |
14 | Wang L. ; Sun W. ; Liu C. Acta Phys. -Chim. Sin. 2019, 35 (7), 697. |
王露; 孙威; 刘超. 物理化学学报, 2019, 35 (7), 697.
doi: 10.3866/PKU.WHXB201807071 |
|
15 |
Tang H. ; Zheng M. ; Hu Q. ; Chi Y. ; Xu B. ; Zhang S. ; Xue H. ; Pang H. J. Mater. Chem. A 2018, 6 (29), 13999.
doi: 10.1039/c8ta03644f |
16 |
Xuan C. ; Zhang J. ; Wang J. ; Wang D. Chem. Asian J. 2020, 15 (7), 958.
doi: 10.1002/asia.20190172 |
17 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
18 |
Man I. C. ; Su H. ; Calle-vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
19 |
Bode H. ; Dehmelt K. ; Witte J. Electrochim. Acta 1966, 11 (8), 1079.
doi: 10.1016/0013-4686(66)80045-2 |
20 |
Huang J. ; Li Y. ; Zhang Y. ; Rao G. ; Wu C. ; Hu Y. ; Wang X. ; Lu R. ; Li Y. ; Xiong J. Angew. Chem. Int. Ed. 2019, 58 (48), 17458.
doi: 10.1002/anie.201910716 |
21 |
Wan Z. ; Yang D. ; Chen J. ; Tian J. ; Isimjan T. T. ; Yang X. ACS Appl. Nano Mater. 2019, 2 (10), 6334.
doi: 10.1021/acsanm.9b01330 |
22 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15341 |
23 |
Li Y. -F. ; Selloni A. ACS Catal. 2014, 4 (4), 1148.
doi: 10.1021/cs401245q |
24 |
Diaz-Morales O. ; Ledezma-Yanez I. ; Koper M. T. M. ; Calle-Vallejo F. ACS Catal. 2015, 5 (9), 5380.
doi: 10.1021/acscatal.5b01638 |
25 |
Li W. H. ; Lv J. ; Li Q. ; Xie J. ; Ogiwara N. ; Huang Y. ; Jiang H. ; Kitagawa H. ; Xu G. ; Wang Y. J. Mater. Chem. A 2019, 7 (17), 10431.
doi: 10.1039/c9ta02169h |
26 |
Yeo B. S. ; Bell A. T. J. Phys. Chem. C 2012, 116 (15), 8394.
doi: 10.1021/jp3007415 |
27 |
Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2015, 44 (8), 2060.
doi: 10.1039/C4CS00470A |
28 |
Suen N. ; Hung S. ; Quan Q. ; Zhang N. ; Xu Y. ; Chen H. Chem. Soc. Rev. 2017, 46 (2), 337.
doi: 10.1039/C6CS00328A |
29 |
Dietzel P. D. C. ; Panella B. ; Hirscher M. ; Blom R. ; Fjellvåg H. Chem. Commun. 2006, 1 (9), 959.
doi: 10.1039/b515434k |
30 |
Palomino Cabello C. ; Gómez-Pozuelo G. ; Opanasenko M. ; Nachtigall P. ; Čejka J. ChemPlusChem 2016, 81 (8), 828.
doi: 10.1002/cplu.201600168 |
31 |
Gao Z. ; Yu Z. W. ; Liu F. Q. ; Yu Y. ; Su X. M. ; Wang L. ; Xu Z. Z. ; Yang Y. L. ; Wu G. R. ; Feng X. F. ; et al Inorg. Chem. 2019, 58 (17), 11500.
doi: 10.1021/acs.inorgchem.9b01301 |
32 |
Janiak C. ; Vieth J. K. New J. Chem. 2010, 34 (11), 2366.
doi: 10.1039/c0nj00275e |
33 |
Tao Z. ; Wang T. ; Wang X. ; Zheng J. ; Li X. ACS Appl. Mater. Interfaces 2016, 8 (51), 35390.
doi: 10.1021/acsami.6b13411 |
34 |
Lin Y. ; Chen G. ; Wan H. ; Chen F. ; Liu X. ; Ma R. Small 2019, 15 (18), 1.
doi: 10.1002/smll.201900348 |
35 |
Yaghi O. M. ; Li H. J. Am. Chem. Soc. 1995, 117 (41), 10401.
doi: 10.1021/ja00146a033 |
36 |
Ping D. ; Feng X. ; Zhang J. ; Geng J. ; Dong X. ChemElectroChem 2017, 4 (12), 3037.
doi: 10.1002/celc.201700901 |
37 |
Zhao S. ; Wang Y. ; Dong J. ; He C. -T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ; et al Nat. Energy 2016, 1 (12), 16184.
doi: 10.1038/nenergy.2016.184 |
38 |
Shuai C. ; Mo Z. ; Niu X. ; Zhao P. ; Dong Q. ; Chen Y. ; Liu N. ; Guo R. J. Electrochem. Soc. 2020, 167 (2), 026512.
doi: 10.1149/1945-7111/ab6b10 |
39 |
Stock N. ; Biswas S. Chem. Rev. 2012, 112 (2), 933.
doi: 10.1021/cr200304e |
40 |
Braga D. ; Giaffreda S. L. ; Grepioni F. ; Pettersen A. ; Maini L. ; Curzi M. ; Polito M. Dalt. Trans. 2006, 10, 1249.
doi: 10.1039/b516165g |
41 |
Zhu D. ; Liu J. ; Wang L. ; Du Y. ; Zheng Y. ; Davey K. ; Qiao S. Z. Nanoscale 2019, 11 (8), 3599.
doi: 10.1039/c8nr09680e |
42 |
Xu Y. ; Tu W. ; Zhang B. ; Yin S. ; Huang Y. ; Kraft M. ; Xu R. Adv. Mater. 2017, 29 (11), 1.
doi: 10.1002/adma.201605957 |
43 |
He P. ; Xie Y. ; Dou Y. ; Zhou J. ; Zhou A. ; Wei X. ; Li J. R. ACS Appl. Mater. Interfaces 2019, 11 (44), 41595.
doi: 10.1021/acsami.9b16224 |
44 |
Yan L. ; Jiang H. ; Xing Y. ; Wang Y. ; Liu D. ; Gu X. ; Dai P. ; Li L. ; Zhao X. J. Mater. Chem. A 2018, 6 (4), 1682.
doi: 10.1039/c7ta10218f |
45 |
Zhang H. ; Su J. ; Zhao K. ; Chen L. ChemElectroChem 2020, 7 (8), 1805.
doi: 10.1002/celc.202000136 |
46 |
Maruthapandian V. ; Kumaraguru S. ; Mohan S. ; Saraswathy V. ; Muralidharan S. ChemElectroChem 2018, 5 (19), 2795.
doi: 10.1002/celc.201800802 |
47 |
Liu Q. ; Xie L. ; Shi X. ; Du G. ; Asiri A. M. ; Luo Y. ; Sun X. Inorg. Chem. Front. 2018, 5 (7), 1570.
doi: 10.1039/C7QI00808B |
48 |
Guo C. ; Jiao Y. ; Zheng Y. ; Luo J. ; Davey K. ; Qiao S. Z. Chem 2019, 5 (9), 2429.
doi: 10.1016/j.chempr.2019.06.016 |
49 |
Hu Q. ; Huang X. ; Wang Z. ; Li G. ; Han Z. ; Yang H. ; Ren X. ; Zhang Q. ; Liu J. ; He C. J. Mater. Chem. A 2020, 8 (4), 2140.
doi: 10.1039/c9ta12713e |
50 |
Li X. ; Fan M. ; Wei D. ; Wang X. ; Wang Y. J. Electrochem. Soc. 2020, 167 (2), 024501.
doi: 10.1149/1945-7111/ab61eb |
51 |
Sun H. ; Lian Y. ; Yang C. ; Xiong L. ; Qi P. ; Mu Q. ; Zhao X. ; Guo J. ; Deng Z. ; Peng Y. Energy Environ. Sci. 2018, 11 (9), 2363.
doi: 10.1039/c8ee00934a |
52 |
Guo Y. ; Zhou Y. ; Nan Y. ; Li B. ; Song X. ACS Appl. Mater. Interfaces 2020, 12 (11), 12743.
doi: 10.1021/acsami.9b20532 |
53 |
Yu X. Y. ; Feng Y. ; Guan B. ; Lou X. W. D. ; Paik U. Energy Environ. Sci. 2016, 9 (4), 1246.
doi: 10.1039/c6ee00100a |
54 |
Jayaramulu K. ; Masa J. ; Tomanec O. ; Peeters D. ; Ranc V. ; Schneemann A. ; Zboril R. ; Schuhmann W. ; Fischer R. A. Adv. Funct. Mater. 2017, 27 (33), 1.
doi: 10.1002/adfm.201700451 |
55 |
Yang L. ; Gao M. ; Dai B. ; Guo X. ; Liu Z. ; Peng B. Electrochim. Acta 2016, 191, 813.
doi: 10.1016/j.electacta.2016.01.160 |
56 |
Xing J. ; Guo K. ; Zou Z. ; Cai M. ; Du J. ; Xu C. Chem. Commun. 2018, 54 (51), 7046.
doi: 10.1039/c8cc03112f |
57 |
Zheng F. ; Xiang D. ; Li P. ; Zhang Z. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. ACS Sustain. Chem. Eng. 2019, 7 (11), 9743.
doi: 10.1021/acssuschemeng.9b01131 |
58 |
Abednatanzi S. ; Gohari Derakhshandeh P. ; Depauw H. ; Coudert F. -X. ; Vrielinck H. ; Van Der Voort P. ; Leus K. Chem. Soc. Rev. 2019, 48 (9), 2535.
doi: 10.1039/C8CS00337H |
59 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interface Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
60 |
Wang L. J. ; Deng H. ; Furukawa H. ; Gándara F. ; Cordova K. E. ; Peri D. ; Yaghi O. M. Inorg. Chem. 2014, 53 (12), 5881.
doi: 10.1021/ic500434a |
61 |
Ma J. ; Lu B. ; Wang S. ; He W. ; Bai X. ; Wang T. ; Zhang X. ; Li Y. ; Zhang L. ; Chen J. ; et al New J. Chem. 2020, 44 (6), 2459.
doi: 10.1039/c9nj05562b |
62 |
Mohammed-Ibrahim J. J. Power Sources 2020, 448, 227375.
doi: 10.1016/j.jpowsour.2019.227375 |
63 |
Zhang W. ; Li D. ; Zhang L. ; She X. ; Yang D. J. Energy Chem. 2019, 39, 39.
doi: 10.1016/j.jechem.2019.01.017 |
64 |
Li C. ; Liu Y. ; Wang G. ; Guan L. ; Lin Y. ACS Sustain. Chem. Eng. 2019, 7 (8), 7496.
doi: 10.1021/acssuschemeng.9b00264 |
65 |
Ling X. ; Du F. ; Zhang Y. ; Shen Y. ; Li T. ; Alsaedi A. ; Hayat T. ; Zhou Y. ; Zou Z. RSC Adv. 2019, 9 (57), 33558.
doi: 10.1039/c9ra07499f |
66 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29 (6), 1.
doi: 10.1002/adfm.201807418 |
67 |
Yang L. ; Zhu G. ; Wen H. ; Guan X. ; Sun X. ; Feng H. ; Tian W. ; Zheng D. ; Cheng X. ; Yao Y. J. Mater. Chem. A 2019, 7 (15), 8771.
doi: 10.1039/c9ta00819e |
68 |
Du J. ; Xu S. ; Sun L. ; Li F. Chem. Commun. 2019, 55 (98), 14773.
doi: 10.1039/c9cc07433c |
69 |
Huang J. ; Li Y. ; Huang R. -K. ; He C. -T. ; Gong L. ; Hu Q. ; Wang L. ; Xu Y. -T. ; Tian X. -Y. ; Liu S. -Y. ; et al Angew. Chem. 2018, 130 (17), 4722.
doi: 10.1002/ange.201801029 |
70 |
Li F. L. ; Wang P. ; Huang X. ; Young D. J. ; Wang H. F. ; Braunstein P. ; Lang J. P. Angew. Chem. Int. Ed. 2019, 58 (21), 7051.
doi: 10.1002/anie.201902588 |
71 |
Jiang J. ; Zhang C. ; Ai L. Electrochim. Acta 2016, 208, 17.
doi: 10.1016/j.electacta.2016.05.008 |
72 |
Fang Z. ; Hao Z. ; Dong Q. ; Cui Y. J. Nanopart. Res. 2018, 20 (4), 106.
doi: 10.1007/s11051-018-4209-3 |
73 |
Srinivas K. ; Lu Y. ; Chen Y. ; Zhang W. ; Yang D. ACS Sustain. Chem. Eng. 2020, 8 (9), 3820.
doi: 10.1021/acssuschemeng.9b07182 |
74 |
Flahaut E. ; Govindaraj A. ; Peigney A. ; Laurent C. ; Rousset A. ; Rao C. N. R. Chem. Phys. Lett. 1999, 300 (1), 236.
doi: 10.1016/S0009-2614(98)01304-9 |
75 |
Zhao X. ; Pachfule P. ; Li S. ; Simke J. R. J. ; Schmidt J. ; Thomas A. Angew. Chem. Int. Ed. 2018, 57 (29), 8921.
doi: 10.1002/anie.201803136 |
76 |
Zou H. H. ; Yuan C. Z. ; Zou H. Y. ; Cheang T. Y. ; Zhao S. J. ; Qazi U. Y. ; Zhong S. L. ; Wang L. ; Xu A. W. Catal. Sci. Technol. 2017, 7 (7), 1549.
doi: 10.1039/c7cy00035a |
77 |
Fang X. ; Jiao L. ; Zhang R. ; Jiang H. L. ACS Appl. Mater. Interfaces 2017, 9 (28), 23852.
doi: 10.1021/acsami.7b07142 |
78 |
Xuan C. ; Wang J. ; Xia W. ; Zhu J. ; Peng Z. ; Xia K. ; Xiao W. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2018, 6 (16), 7062.
doi: 10.1039/c8ta00410b |
79 |
Zhou W. ; Huang D. D. ; Wu Y. P. ; Zhao J. ; Wu T. ; Zhang J. ; Li D. S. ; Sun C. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2019, 58 (13), 4227.
doi: 10.1002/anie.201813634 |
80 |
Hu W. C. ; Shi Y. ; Zhou Y. ; Weng C. ; Younis M. R. ; Pang J. ; Wang C. ; Xia X. H. J. Mater. Chem. A 2019, 7 (17), 10601.
doi: 10.1039/c9ta00847k |
81 |
Li D. J. ; Li Q. H. ; Gu Z. G. ; Zhang J. J. Mater. Chem. A 2019, 7 (31), 18519.
doi: 10.1039/c9ta04554f |
82 |
Shen Y. ; Guo S. G. ; Du F. ; Yuan X. B. ; Zhang Y. ; Hu J. ; Shen Q. ; Luo W. ; Alsaedi A. ; Hayat T. ; et al Nanoscale 2019, 11 (24), 11765.
doi: 10.1039/c9nr01804b |
83 |
Wei X. ; Zhang Y. ; He H. ; Gao D. ; Hu J. ; Peng H. ; Peng L. ; Xiao S. ; Xiao P. Chem. Commun. 2019, 55 (46), 6515.
doi: 10.1039/c9cc02037c |
84 |
Sun D. ; Ye L. ; Sun F. ; García H. ; Li Z. Inorg. Chem. 2017, 56 (9), 5203.
doi: 10.1021/acs.inorgchem.7b00333 |
85 |
Jia X. ; Wang M. ; Liu G. ; Wang Y. ; Yang J. ; Li J. Int. J. Hydrog. Energy 2019, 44 (45), 24572.
doi: 10.1016/j.ijhydene.2019.07.144 |
86 |
Feng C. ; Guo Y. ; Xie Y. ; Cao X. ; Li S. ; Zhang L. ; Wang W. ; Wang J. Nanoscale 2020, 12 (10), 5942.
doi: 10.1039/c9nr10943a |
87 |
Yan L. ; Cao L. ; Dai P. ; Gu X. ; Liu D. ; Li L. ; Wang Y. ; Zhao X. Adv. Funct. Mater. 2017, 27 (40), 1.
doi: 10.1002/adfm.201703455 |
88 |
Fan S. ; Zhang J. ; Wu Q. ; Huang S. ; Zheng J. ; Kong D. ; Chen S. ; Wang Y. ; Ang L. K. ; Shi Y. ; et al J. Phys. Chem. Lett. 2020, 11 (10), 3911.
doi: 10.1021/acs.jpclett.0c00851 |
89 |
Chen B. ; Ma G. ; Zhu Y. ; Wang J. ; Xiong W. ; Xia Y. J. Power Sources 2016, 334, 112.
doi: 10.1016/j.jpowsour.2016.10.022 |
90 |
Chen W. ; Zhang Y. ; Chen G. ; Huang R. ; Wu Y. ; Zhou Y. ; Hu Y. ; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.
doi: 10.1016/j.jcis.2019.10.099 |
91 |
Ma X. ; Qi K. ; Wei S. ; Zhang L. ; Cui X. J. Alloys Compd. 2019, 770, 236.
doi: 10.1016/j.jallcom.2018.08.096 |
92 |
Zheng X. ; Song X. ; Wang X. ; Zhang Z. ; Sun Z. ; Guo Y. New J. Chem. 2018, 42 (11), 8346.
doi: 10.1039/c8nj01035h |
93 |
Li X. ; Wang X. ; Zhou J. ; Han L. ; Sun C. ; Wang Q. ; Su Z. J. Mater. Chem. A 2018, 6 (14), 5789.
doi: 10.1039/c7ta10558d |
94 |
Li F. L. ; Shao Q. ; Huang X. ; Lang J. P. Angew. Chem. Int. Ed. 2018, 57 (7), 1888.
doi: 10.1002/anie.201711376 |
95 |
Yuan J. T. ; Hou J. J. ; Liu X. L. ; Feng Y. R. ; Zhang X. M. Dalt. Trans. 2020, 49 (3), 750.
doi: 10.1039/c9dt04295d |
96 |
Wang X. ; Xiao H. ; Li A. ; Li Z. ; Liu S. ; Zhang Q. ; Gong Y. ; Zheng L. ; Zhu Y. ; Chen C. ; et al J. Am. Chem. Soc. 2018, 140 (45), 15336.
doi: 10.1021/jacs.8b08744 |
97 |
Zhang W. Da ; Yu H. ; Li T. ; Hu Q. T. ; Gong Y. ; Zhang D. Y. ; Liu Y. ; Fu Q. T. ; Zhu H. Y. ; et al Appl. Catal. B Environ. 2020, 264, 118532.
doi: 10.1016/j.apcatb.2019.118532 |
98 |
Ahn W. ; Park M. G. ; Lee D. U. ; Seo M. H. ; Jiang G. ; Cano Z. P. ; Hassan F. M. ; Chen Z. Adv. Funct. Mater. 2018, 28 (28), 1.
doi: 10.1002/adfm.201802129 |
99 |
Yuan B. ; Li C. ; Guan L. ; Li K. ; Lin Y. J. Power Sources 2020, 451, 227295.
doi: 10.1016/j.jpowsour.2019.227295 |
100 |
Xie A. ; Du J. ; Tao F. ; Tao Y. ; Xiong Z. ; Luo S. ; Li X. ; Yao C. Electrochim. Acta 2019, 305, 338.
doi: 10.1016/j.electacta.2019.03.073 |
101 |
Xie A. ; Zhang J. ; Tao X. ; Zhang J. ; Wei B. ; Peng W. ; Tao Y. ; Luo S. Electrochim. Acta 2019, 324, 134814.
doi: 10.1016/j.electacta.2019.134814 |
102 |
Senthil Raja D. ; Lin H. W. ; Lu S. Y. Nano Energy 2019, 57, 1.
doi: 10.1016/j.nanoen.2018.12.018 |
103 |
Wang Q. ; Wei C. ; Li D. ; Guo W. ; Zhong D. ; Zhao Q. Microporous Mesoporous Mater. 2019, 286, 92.
doi: 10.1016/j.micromeso.2019.05.040 |
104 |
Li Y. ; Lu M. ; He P. ; Wu Y. ; Wang J. ; Chen D. ; Xu H. ; Gao J. ; Yao J. Chem. Asian J. 2019, 14 (9), 1590.
doi: 10.1002/asia.201900328 |
105 |
Kumar A. ; Bhattacharyya S. ACS Appl. Mater. Interfaces 2017, 9 (48), 41906.
doi: 10.1021/acsami.7b14096 |
106 |
Qiao H. ; Yang Y. ; Dai X. ; Zhao H. ; Yong J. ; Yu L. ; Luan X. ; Cui M. ; Zhang X. ; Huang X. Electrochim. Acta 2019, 318, 430.
doi: 10.1016/j.electacta.2019.06.084 |
107 |
Ma Y. ; Dai X. ; Liu M. ; Yong J. ; Qiao H. ; Jin A. ; Li Z. ; Huang X. ; Wang H. ; Zhang X. ACS Appl. Mater. Interfaces 2016, 8 (50), 34396.
doi: 10.1021/acsami.6b11821 |
108 |
Du L. ; Luo L. ; Feng Z. ; Engelhard M. ; Xie X. ; Han B. ; Sun J. ; Zhang J. ; Yin G. ; Wang C. ; et al Nano Energy 2017, 39, 245.
doi: 10.1016/j.nanoen.2017.07.006 |
109 |
Abdelkader-Fernández V. K. ; Fernandes D. M. ; Balula S. S. ; Cunha-Silva L. ; Pérez-Mendoza M. J. ; López-Garzón F. J. ; Pereira M. F. ; Freire C. ACS Appl. Energy Mater. 2019, 2 (3), 1854.
doi: 10.1021/acsaem.8b02010 |
110 |
Xie Z. ; Tang H. ; Wang Y. ChemElectroChem 2019, 6 (4), 1206.
doi: 10.1002/celc.201801106 |
111 |
Nadeem M. ; Yasin G. ; Bhatti M. H. ; Mehmood M. ; Arif M. ; Dai L. J. Power Sources 2018, 402, 34.
doi: 10.1016/j.jpowsour.2018.09.006 |
112 |
Hassan M. H. ; Soliman A. B. ; Elmehelmey W. A. ; Abugable A. A. ; Karakalos S. G. ; Elbahri M. ; Hassanien A. ; Alkordi M. H. Chem. Commun. 2019, 55 (1), 31.
doi: 10.1039/c8cc07120a |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[8] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[9] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[10] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[11] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[12] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[13] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[14] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[15] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
|