Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2011059.doi: 10.3866/PKU.WHXB202011059
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Received:
2020-11-23
Accepted:
2020-12-14
Published:
2020-12-21
Contact:
Bin Wang
E-mail:wangb@nanoctr.cn
About author:
Bin Wang. Email: wangb@nanoctr.cnTao Liang, Bin Wang. Interlayer Covalently Enhanced Graphene Materials: Construction, Properties, and Applications[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2011059. doi: 10.3866/PKU.WHXB202011059
Fig 1
Preparation of GO paper and the interlayer cross-linking. (a) A photo of flexible GO paper. (b) The cross-section SEM image of GO paper showing the layered structure. (c) The schematic of interlayer boron ion covalent connection. (d) pH triggered GO nanosheets crosslinking with polymer. (a, b) Adapted with permission from Ref. 16. Copyright 2007, Nature Publishing Group. (c) Adapted with permission from Ref. 20. Copyright 2011, Wiley-VCH. (d) Adapted with permission from Ref. 21. Copyright 2013, Wiley-VCH."
Fig 2
Preparation of GO fiber and the interlayer cross-linking. (a) Schematic apparatus for preparing GO fiber. The inset shows a five-meter long GO fiber wound on a ceramic reel. (b, c) SEM image of GO fiber knot and surface wrinkle structures. (d) Schematic of the interlayer cross-linking phenolic carbon. (e) The density of the graphene fiber as a function of the phenolic carbon content. (f) A schematic showing the preparation process of bioinspired rGO-Ca2+-PCDO fibers. (a) Adapted with permission from Ref. 29. Copyright 2013, Wiley-VCH. (b, c) Adapted with permission from Ref. 28. Copyright 2011, Nature Publishing Group. (d, e) Adapted with permission from Ref. 37. Copyright 2016, American Chemical Society. (f) Adapted with permission from Ref. 38. Copyright 2016, Wiley-VCH."
Fig 3
Transformation from graphene to diamane under pressure. (a) The apparatus used to probe the sheet resistance variation when pressure increases for different layer numbers of graphene. (b) The sheet resistance as a function of pressure for different layer numbers of graphene. (c) The evolution of Raman G peak as a function of pressure when water is used as the pressure transmission medium. (d) The critical pressure for graphene-diamane transition as a function of layer number. (e) The Raman spectra for mono- and bilayer graphene film after transition when silicone and water are used as the pressure transmission medium. (a, b, d) Adapted with permission from Ref. 48. Copyright 2020, American Chemical Society. (c, e) Adapted with permission from Ref. 49. Copyright 2020, AIP Publishing."
Fig 4
TEM image of bilayer graphene on CuNi(111) before and after the graphene-diamane transition. (a) Bilayer graphene before the transition. (b, c) F-diamane after the transition. (d) The modeled atomic structure and TEM image for the F-diamane. (a–d) Adapted with permission from Ref. 52. Copyright 2020, Nature Publishing Group."
Fig 6
The constructed rGO paper with multiple kinds of interlayer interactions. (a) The structural schematic of rGO paper with covalent and π–π interlayer interaction. (b) The stress-strain curves for rGO papers with different interlayer interactions. (c) The tensile strength, toughness, and structure retention time in diverse solvent for rGO papers with different interlayer interactions. (d) The electrical conductivity and gravimetric electrical conductivity for rGO papers with different interlayer interactions. (a–d) Adapted with permission from Ref. 27. Copyright 2018, PNAS."
Table 1
The mechanical properties of macroscopic assemblied graphene materials."
Materials | Young’s Modulus/GPa | Tensile Strength /MPa | Strain/% | Reference |
Monolayer Graphene | 1000 | 130000 | – | |
GO Paper | 32 | 100 | 0.6 | |
Glutaraldehyde-GO Paper | 30.4 | 101 | 0.4 | |
Polyallylamine-GO Paper | 33.3 ± 2.7 | 91.9 ± 22.4 | 0.32 ± 0.08 | |
Boron-GO Paper | 127 ± 4 | 185 ± 30 | – | |
PEI Crosslinked GO Paper | 103.4 | 209.9 | – | |
GO Fiber | 5.4 | 102 | 6.8–10.1 | |
Phenolic Resin-GO Fiber | 120 | 1450 | 1.8 | |
Monolayer GO | 207.6 ± 23.4 | – | – | |
Monolayer rGO | 250 | – | – |
Fig 7
(a) The variation of sheet resistance as a function of nitroxide content. (b) The comparison of electrical conductivity for GO, h-rGO, and pDop-rGO at different annealing temperatures. (c) The comparison of conductivity at different annealing temperature between polydopamine-free and polydopamine treated rGO fibers. (d) The variation of conductivity of rGO fiber as a function of dopamine content. (a) Adapted with permission from Ref. 57. Copyright 2016, American Chemical Society. (b) Adapted with permission from Ref. 58. Copyright 2013, Elsevier Ltd. (c, d) Adapted with permission from Ref. 59. Copyright 2018, Wiley-VCH."
Fig 8
Construction and test of TFT devices based on graphene/Ag hybrid electrodes. (a) Schematic of the TFT device.(b) The connection of the device. (c, d) Output and transfer curves of the devices with P3HT semiconducting channel. (a–d) Adapted with permission from Ref. 63. Copyright 2015, Nature Publishing Group."
Fig 9
All-solid-state asymmetric supercapacitors based on graphene paper electrodes. (a) Schematic of the device. (b, c) The photos of the carbon nanotubes/graphene and Mn3O4 nanoparticles/graphene hybrid electrodes. (d, e) The cross-section SEM images of the carbon nanotubes/graphene and Mn3O4 nanoparticles/graphene hybrid electrodes. (f) The photos of the supercapacitors in normal, bending, and twisting states. (g) Cyclic voltammograms curves of the devices under different cell voltages. (h) Specific capacitance of the device as a function of current densities. (i) Specific capacitance retention of the device at normal (n), bending (b), and twisting (t) states and after being bent repeatedly. (a–i) Adapted with permission from Ref. 64. Copyright 2012, American Chemical Society."
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
2 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 382.
doi: 10.1126/science.1156211 |
3 |
Stoller M. D. ; Park S. ; Zhu Y. ; An J. ; Ruoff R. S. Nano Lett. 2008, 8, 3498.
doi: 10.1021/nl802558y |
4 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
5 |
Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.
doi: 10.1021/ja01539a017 |
6 |
Paton K. R. ; Varrla E. ; Backes C. ; Smith R. J. ; Khan U. ; O'Neill A. ; Boland C. ; Lotya M. ; Istrate O. M. ; King P. ; et al Nature Mater. 2014, 13, 624.
doi: 10.1038/nmat3944 |
7 |
Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; et al Science 2009, 324, 1312.
doi: 10.1126/science.1171245 |
8 |
Liang T. ; Kong Y. ; Chen H. ; Xu M. Chin. J. Chem. 2016, 34, 32.
doi: 10.1002/cjoc.201500429 |
9 |
Lin Y.-M. ; Dimitrakopoulos C. ; Jenkins K. A. ; Farmer D. B. ; Chiu H.-Y. ; Grill A. ; Avouris P. Science 2010, 327, 662.
doi: 10.1126/science.1184289 |
10 |
Zhang Y. ; Gong S. ; Zhang Q. ; Ming P. ; Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Chem. Soc. Rev. 2016, 45, 2378.
doi: 10.1039/C5CS00258C |
11 |
Pan L. ; Liu Y. ; Zhong M. ; Xie X. Small 2020, 16, 1902779.
doi: 10.1002/smll.201902779 |
12 |
Rao C. N. R. ; Pramoda K. ; Kumar R. Chem. Commun. 2017, 53, 10093.
doi: 10.1039/C7CC05390H |
13 |
Shehzad K. ; Xu Y. ; Gao C. ; Duan X. Chem. Soc. Rev. 2016, 45, 5541.
doi: 10.1039/C6CS00218H |
14 |
Cong H.-P. ; Chen J.-F. ; Yu S.-H. Chem. Soc. Rev. 2014, 43, 7295.
doi: 10.1039/C4CS00181H |
15 |
Georgakilas V. ; Tiwari J. N. ; Kemp K. C. ; Perman J. A. ; Bourlinos A. B. ; Kim K. S. ; Zboril R. Chem. Rev. 2016, 116, 5464.
doi: 10.1021/acs.chemrev.5b00620 |
16 |
Dikin D. A. ; Stankovich S. ; Zimney E. J. ; Piner R. D. ; Dommett G. H. B. ; Evmenenko G. ; Nguyen S. T. ; Ruoff R. S. Nature 2007, 448, 457.
doi: 10.1038/nature06016 |
17 |
Gao Y. ; Liu L.-Q. ; Zu S.-Z. ; Peng K. ; Zhou D. ; Han B.-H. ; Zhang Z. ACS Nano 2011, 5, 2134.
doi: 10.1021/nn103331x |
18 |
Cao C. ; Daly M. ; Chen B. ; Howe J. Y. ; Singh C. V. ; Filleter T. ; Sun Y. Nano Lett. 2015, 15, 6528.
doi: 10.1021/acs.nanolett.5b02173 |
19 |
Park S. ; Dikin D. A. ; Nguyen S. T. ; Ruoff R. S. J. Phys. Chem. C 2009, 113, 15801.
doi: 10.1021/jp907613s |
20 |
An Z. ; Compton O. C. ; Putz K. W. ; Brinson L. C. ; Nguyen S. T. Adv. Mater. 2011, 23, 3842.
doi: 10.1002/adma.201101544 |
21 |
Tian Y. ; Cao Y. ; Wang Y. ; Yang W. ; Feng J. Adv. Mater. 2013, 25, 2980.
doi: 10.1002/adma.201300118 |
22 |
Compton O. C. ; Dikin D. A. ; Putz K. W. ; Brinson L. C. ; Nguyen S. T. Adv. Mater. 2010, 22, 892.
doi: 10.1002/adma.200902069 |
23 |
Bourlinos A. B. ; Gournis D. ; Petridis D. ; Szabó T. ; Szeri A. ; Dékány I. Langmuir 2003, 19, 6050.
doi: 10.1021/la026525h |
24 |
Matsuo Y. ; Watanabe K. ; Fukutsuka T. ; Sugie Y. Carbon 2003, 41, 1545.
doi: 10.1016/S0008-6223(03)00079-4 |
25 |
Matsuo Y. ; Miyabe T. ; Fukutsuka T. ; Sugie Y. Carbon 2007, 45, 1005.
doi: 10.1016/j.carbon.2006.12.023 |
26 |
Chen H. ; Müller M. B. ; Gilmore K. J. ; Wallace G. G. ; Li D. Adv. Mater. 2008, 20, 3557.
doi: 10.1002/adma.200800757 |
27 |
Wan S. ; Li Y. ; Mu J. ; Aliev A. E. ; Fang S. ; Kotov N. A. ; Jiang L. ; Cheng Q. ; Baughman R. H. Proc. Natl. Acad. Sci. 2018, 115, 5359.
doi: 10.1073/pnas.1719111115 |
28 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
29 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
30 |
Xu Z. ; Gao C. Acc. Chem. Res. 2014, 47, 1267.
doi: 10.1021/ar4002813 |
31 |
Xu Z. ; Liu Y. ; Zhao X. ; Peng L. ; Sun H. ; Xu Y. ; Ren X. ; Jin C. ; Xu P. ; Wang M. ; et al Adv. Mater. 2016, 28, 6449.
doi: 10.1002/adma.201506426 |
32 |
Huang G. ; Hou C. ; Shao Y. ; Wang H. ; Zhang Q. ; Li Y. ; Zhu M. Sci. Rep. 2015, 4, 4248.
doi: 10.1038/srep04248 |
33 |
Xu Z. ; Liu Z. ; Sun H. ; Gao C. Adv. Mater. 2013, 25, 3249.
doi: 10.1002/adma.201300774 |
34 |
Kou L. ; Gao C. Nanoscale 2013, 5, 4370.
doi: 10.1039/c3nr00455d |
35 |
Liu Z. ; Xu Z. ; Hu X. ; Gao C. Macromolecules 2013, 46, 6931.
doi: 10.1021/ma400681v |
36 |
Zhao X. ; Xu Z. ; Zheng B. ; Gao C. Sci. Rep. 2013, 3, 3164.
doi: 10.1038/srep03164 |
37 |
Li M. ; Zhang X. ; Wang X. ; Ru Y. ; Qiao J. Nano Lett. 2016, 16, 6511.
doi: 10.1021/acs.nanolett.6b03108 |
38 |
Zhang Y. ; Li Y. ; Ming P. ; Zhang Q. ; Liu T. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 2834.
doi: 10.1002/adma.201506074 |
39 |
Liang T. ; Luan C. ; Chen H. ; Xu M. Nanoscale 2017, 9, 3719.
doi: 10.1039/C7NR00188F |
40 |
Habib M. R. ; Liang T. ; Yu X. ; Pi X. ; Liu Y. ; Xu M. Rep. Prog. Phys. 2018, 81, 036501.
doi: 10.1088/1361-6633/aa9bbf |
41 |
Liang T. ; Habib M. R. ; Kong Y. ; Cai Y. ; Chen H. ; Fujita D. ; Lin C.-T. ; Liu Y. ; Yu C. ; Su H. ; et al Carbon 2019, 147, 120.
doi: 10.1016/j.carbon.2019.02.075 |
42 |
Odkhuu D. ; Shin D. ; Ruoff R. S. ; Park N. Sci. Rep. 2013, 3, 3276.
doi: 10.1038/srep03276 |
43 |
Barboza A. P. M. ; Guimaraes M. H. D. ; Massote D. V. P. ; Campos L. C. ; Barbosa Neto N. M. ; Cancado L. G. ; Lacerda R. G. ; Chacham H. ; Mazzoni M. S. C. ; Neves B. R. A. Adv. Mater. 2011, 23, 3014.
doi: 10.1002/adma.201101061 |
44 |
Martins L. G. P. ; Matos M. J. S. ; Paschoal A. R. ; Freire P. T. C. ; Andrade N. F. ; Aguiar A. L. ; Kong J. ; Neves B. R. A. ; de Oliveira A. B. ; Mazzoni M. S. C. ; et al Nat. Commun. 2017, 8, 96.
doi: 10.1038/s41467-017-00149-8 |
45 |
Chernozatonskii L. A. ; Sorokin P. B. ; Kvashnin A. G. ; Kvashnin D. G. JEPT Lett. 2009, 90, 134.
doi: 10.1134/S0021364009140112 |
46 |
Kvashnin A. G. ; Chernozatonskii L. A. ; Yakobson B. I. ; Sorokin P. B. Nano Lett. 2014, 14, 676.
doi: 10.1021/nl403938g |
47 |
Luo Z. ; Yu T. ; Kim K. ; Ni Z. ; You Y. ; Lim S. ; Shen Z. ; Wang S. ; Lin J. ACS Nano 2009, 3, 1781.
doi: 10.1021/nn900371t |
48 |
Ke F. ; Zhang L. ; Chen Y. ; Yin K. ; Wang C. ; Tzeng Y.-K. ; Lin Y. ; Dong H. ; Liu Z. ; Tse J. S. ; et al Nano Lett. 2020, 20, 5916.
doi: 10.1021/acs.nanolett.0c01872 |
49 |
Tao Z. ; Du J. ; Qi Z. ; Ni K. ; Jiang S. ; Zhu Y. Appl. Phys. Lett. 2020, 116, 133101.
doi: 10.1063/1.5135027 |
50 |
Gao Y. ; Cao T. ; Cellini F. ; Berger C. ; de Heer W. A. ; Tosatti E. ; Riedo E. ; Bongiorno A. Nat. Nanotechnol. 2018, 13, 133.
doi: 10.1038/s41565-017-0023-9 |
51 |
Rajasekaran S. ; Abild-Pedersen F. ; Ogasawara H. ; Nilsson A. ; Kaya S. Phys. Rev. Lett. 2013, 111, 085503.
doi: 10.1103/PhysRevLett.111.085503 |
52 |
Bakharev P. V. ; Huang M. ; Saxena M. ; Lee S. W. ; Joo S. H. ; Park S. O. ; Dong J. ; Camacho-Mojica D. C. ; Jin S. ; Kwon Y. ; et al Nat. Nanotechnol. 2020, 15, 59.
doi: 10.1038/s41565-019-0582-z |
53 |
Cheng T. ; Liu Z. ; Liu Z. J. Mater. Chem. C 2020, 8, 13819.
doi: 10.1039/D0TC03253K |
54 |
Suk J. W. ; Piner R. D. ; An J. ; Ruoff R. S. ACS Nano 2010, 4, 6557.
doi: 10.1021/nn101781v |
55 |
Cao C. ; Daly M. ; Singh C. V. ; Sun Y. ; Filleter T. Carbon 2015, 81, 497.
doi: 10.1016/j.carbon.2014.09.082 |
56 |
Papageorgiou D. G. ; Kinloch I. A. ; Young R. J. Prog. Mater. Sci. 2017, 90, 75.
doi: 10.1016/j.pmatsci.2017.07.004 |
57 |
Márquez-Lamas U. ; Martínez-Guerra E. ; Toxqui-Terán A. ; Aguirre-Tostado F. S. ; Lara-Ceniceros T. E. ; Bonilla-Cruz J. J. Phys. Chem. C 2017, 121, 852.
doi: 10.1021/acs.jpcc.6b09961 |
58 |
Lee W. ; Lee J. U. ; Jung B. M. ; Byun J.-H. ; Yi J.-W. ; Lee S.-B. ; Kim B.-S. Carbon 2013, 65, 296.
doi: 10.1016/j.carbon.2013.08.029 |
59 |
Ma T. ; Gao H.-L. ; Cong H.-P. ; Yao H.-B. ; Wu L. ; Yu Z.-Y. ; Chen S.-M. ; Yu S.-H. Adv. Mater. 2018, 30, 1706435.
doi: 10.1002/adma.201706435 |
60 |
Jia Z. ; Wang Y. J. Mater. Chem. A 2015, 3, 4405.
doi: 10.1039/C4TA06193D |
61 |
Nam Y. T. ; Choi J. ; Kang K. M. ; Kim D. W. ; Jung H.-T. ACS Appl. Mater. Interfaces 2016, 8, 27376.
doi: 10.1021/acsami.6b09912 |
62 |
Lim M.-Y. ; Choi Y.-S. ; Kim J. ; Kim K. ; Shin H. ; Kim J.-J. ; Shin D. M. ; Lee J.-C. J. Membr. Sci. 2017, 521, 1.
doi: 10.1016/j.memsci.2016.08.067 |
63 |
Yoon S. S. ; Lee K. E. ; Cha H.-J. ; Seong D. G. ; Um M.-K. ; Byun J.-H. ; Oh Y. ; Oh J. H. ; Lee W. ; Lee J. U. Sci. Rep. 2015, 5, 16366.
doi: 10.1038/srep16366 |
64 |
Gao H. ; Xiao F. ; Ching C. B. ; Duan H. ACS Appl. Mater. Interfaces 2012, 4, 7020.
doi: 10.1021/am302280b |
65 |
Ma Y. ; Zheng Y. ; Zhu Y. Sci. China Mater. 2020, 63, 9.
doi: 10.1007/s40843-019-9462-9 |
66 |
Zhu Y. ; Ji H. ; Cheng H.-M. ; Ruoff R. S. Natl. Sci. Rev. 2018, 5, 90.
doi: 10.1093/nsr/nwx055 |
67 |
Shen B. ; Zhai W. ; Zheng W. Adv. Funct. Mater. 2014, 24, 4542.
doi: 10.1002/adfm.201400079 |
68 |
Wang N. ; Samani M. K. ; Li H. ; Dong L. ; Zhang Z. ; Su P. ; Chen S. ; Chen J. ; Huang S. ; Yuan G. ; et al Small 2018, 14, 1801346.
doi: 10.1002/smll.201801346 |
69 |
Han H. ; Zhang Y. ; Wang N. ; Samani M. K. ; Ni Y. ; Mijbil Z. Y. ; Edwards M. ; Xiong S. ; Sääskilahti K. ; Murugesan M. ; et al Nat. Commun. 2016, 7, 11281.
doi: 10.1038/ncomms11281 |
70 |
Jia Z. ; Wang Y. ; Shi W. ; Wang J. J. Membr. Sci. 2016, 520, 139.
doi: 10.1016/j.memsci.2016.07.042 |
71 |
Cao M.-S. ; Wang X.-X. ; Cao W.-Q. ; Yuan J. J. Mater. Chem. C 2015, 3, 6589.
doi: 10.1039/C5TC01354B |
72 |
Song W.-L. ; Fan L.-Z. ; Cao M.-S. ; Lu M.-M. ; Wang C.-Y. ; Wang J. ; Chen T.-T. ; Li Y. ; Hou Z.-L. ; Liu J. ; et al J. Mater. Chem. C 2014, 2, 5057.
doi: 10.1039/C4TC00517A |
73 |
Liu Y. ; Liang H. ; Xu Z. ; Xi J. ; Chen G. ; Gao W. ; Xue M. ; Gao C. ACS Nano 2017, 11, 4301.
doi: 10.1021/acsnano.7b01491 |
74 |
Zhang M. ; Huang L. ; Chen J. ; Li C. ; Shi G. Adv. Mater. 2014, 26, 7588.
doi: 10.1002/adma.201403322 |
75 |
Lin X. ; Shen X. ; Zheng Q. ; Yousefi N. ; Ye L. ; Mai Y.-W. ; Kim J.-K. ACS Nano 2012, 6, 10708.
doi: 10.1021/nn303904z |
76 |
Cheng Q. ; Wu M. ; Li M. ; Jiang L. ; Tang Z. Angew. Chem. 2013, 125, 3838.
doi: 10.1002/ange.201210166 |
77 |
Cui W. ; Li M. ; Liu J. ; Wang B. ; Zhang C. ; Jiang L. ; Cheng Q. ACS Nano 2014, 8, 9511.
doi: 10.1021/nn503755c |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[3] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[4] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[5] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[6] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[7] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[8] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[9] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[10] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[11] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[12] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[13] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[14] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[15] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
|