Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1902001.doi: 10.3866/PKU.WHXB201902001
Special Issue: Photocatalyst
• Article • Previous Articles Next Articles
Xiaowei Li,Bin Wang,Wenxuan Yin,Jun Di,Jiexiang Xia*(),Wenshuai Zhu*(),Huaming Li
Received:
2019-02-01
Accepted:
2019-05-13
Published:
2019-05-17
Contact:
Jiexiang Xia,Wenshuai Zhu
E-mail:xjx@ujs.edu.cn;zhuws@ujs.edu.cn
Supported by:
Xiaowei Li,Bin Wang,Wenxuan Yin,Jun Di,Jiexiang Xia,Wenshuai Zhu,Huaming Li. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties[J]. Acta Physico-Chimica Sinica 2020, 36(3), 1902001. doi: 10.3866/PKU.WHXB201902001
1 |
Hochbaum A. I. ; Yang P. Chem. Rev. 2010, 110, 527.
doi: 10.1021/cr900075v |
2 |
Zou Z. G. ; Ye J. H. ; Sayama K. ; Arakawa H. Nature 2001, 414, 625.
doi: 10.1038/414625a |
3 |
Shi R. ; Waterhouse G. I. N. ; Zhang T. Solar Rrl. 2017, 1, 1700126.
doi: 10.1002/solr.201700126 |
4 |
Cao S. ; Li H. ; Tong T. ; Chen H. ; Yu A. ; Yu J. ; Chen H. M. Adv. Funct. Mater. 2018, 28, 180216932.
doi: 10.1002/adfm.201802169 |
5 |
Gong C. ; Xiang S. W. ; Zhang Z. Y. ; Sun L. ; Ye C. Q. ; Lin C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
弓程; 向思弯; 张泽阳; 孙岚; 叶陈清; 林昌健. 物理化学学报, 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
|
6 |
Guo X. ; Li X. ; Qin L. ; Kang S. ; Li G. Appl. Catal. B-Environ. 2019, 243, 1.
doi: 10.1016/j.apcatb.2018.10.030 |
7 |
Casillas J. E. ; Tzompantzi F. ; Castellanos S. G. ; Mendoza-Damian G. ; Perez-Hernandez R. ; Lopez-Gaona A. ; Barrera A. Appl. Catal. B-Environ. 2017, 208, 161.
doi: 10.1016/j.apcatb.2017.02.030 |
8 |
Lops C. ; Ancona A. ; Di Cesare K. ; Dumontel B. ; Garino N. ; Canavese G. ; Hernandez S. ; Cauda V. Appl. Catal. B-Environ. 2019, 243, 629.
doi: 10.1016/j.apcatb.2018.10.078 |
9 |
Jin Z. ; Zhang Q. ; Hu L. ; Chen J. ; Cheng X. ; Zeng Y. ; Ruan S. ; Ohno T. Appl. Catal. B-Environ. 2017, 205, 569.
doi: 10.1016/j.apcatb.2016.12.069 |
10 |
Jelinska A. ; Bienkowski K. ; Jadwiszczak M. ; Pisarek M. ; Strawski M. ; Kurzydlowski D. ; Solarska R. ; Augustynski J. ACS Catal. 2018, 8, 10573.
doi: 10.1021/acscatal.8b03497 |
11 |
Chen Y. ; Zhu G. ; Hojamberdiev M. ; Gao J. ; Zhu R. ; Wang C. ; Wei X. ; Liu P. J. Hazard. Mater. 2018, 344, 42.
doi: 10.1016/j.jhazmat.2017.10.015 |
12 |
Yamaguchi Y. ; Usuki S. ; Kanai Y. ; Yamatoya K. ; Suzuki N. ; Katsumata K. ; Terashima C. ; Suzuki T. ; Fujishima A. ; Sakai H. ; et al ACS Appl. Mater. Inter. 2017, 9, 31393.
doi: 10.1021/acsami.7b07786 |
13 |
Guo S. ; Tang Y. ; Xie Y. ; Tian C. ; Feng Q. ; Zhou W. ; Jiang B. Appl. Catal. B-Environ. 2017, 218, 664.
doi: 10.1016/j.apcatb.2017.07.022 |
14 |
Weon S. ; Kim J. ; Choi W. Appl. Catal. B-Environ. 2018, 220, 1.
doi: 10.1016/j.apcatb.2017.08.036 |
15 |
Liu J. ; Zhang C. ; Ma B. ; Yang T. ; Gu X. ; Wang X. ; Zhang J. ; Hu C. Nano Energy. 2017, 38, 271.
doi: 10.1016/j.nanoen.2017.05.052 |
16 |
Wang B. ; Di J. ; Zhang P. ; Xia J. ; Dai S. ; Li H. Appl. Catal. B-Environ. 2017, 206, 127.
doi: 10.1016/j.apcatb.2016.12.049 |
17 |
Wang B. ; Di J. ; Liu G. ; Yin S. ; Xia J. ; Zhang Q. ; Li H. J. Colloid Interf. Sci. 2017, 507, 310.
doi: 10.1016/j.jcis.2017.07.094 |
18 |
Teixeira I. F. ; Barbosa E. C. M. ; Tsang S. C. E. ; Camargo P. H. C. Chem. Soc. Rev. 2018, 47, 7783.
doi: 10.1039/c8cs00479j |
19 |
Huang D. ; Yan X. ; Yan M. ; Zeng G. ; Zhou C. ; Wan J. ; Cheng M. ; Xue W. ACS Appl Mater Inter. 2018, 10, 21035.
doi: 10.1021/acsami.8b03620 |
20 |
Yu H. ; Shi R. ; Zhao Y. ; Bian T. ; Zhao Y. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. ; Tung C. ; Zhang T. Adv. Mater. 2017, 29, 160514816.
doi: 10.1002/adma.201605148 |
21 |
Zhou C. ; Shi R. ; Shang L. ; Wu L. ; Chen-Ho T. ; Tierui Z. Nano Res. 2018, 11, 3462.
doi: 10.1007/s12274-018-2003-2 |
22 |
Han C. ; Li J. ; Ma Z. ; Xie H. ; Waterhouse G. I. N. ; Ye L. ; Zhang T. Sci. China Mater. 2018, 61, 1159.
doi: 10.1007/s40843-018-9245-y |
23 |
Zhao H. ; Ding X. ; Zhang B. ; Li Y. ; Wang C. Sci. Bull. 2017, 62, 602.
doi: 10.1016/j.scib.2017.03.005 |
24 |
Xia P. ; Antonietti M. ; Zhu B. ; Heil T. ; Yu J. ; Cao S. Adv. Funct. Mater. 2019, 29, 1900093.
doi: 10.1002/adfm.201900093 |
25 |
Wu M. ; Zhang J. ; He B. ; Wang H. ; Wang R. ; Gong Y. Appl. Catal. B-Environ. 2019, 241, 159.
doi: 10.1016/j.apcatb.2018.09.037 |
26 |
Xu Y. ; Ge F. ; Chen Z. ; Huang S. ; Wei W. ; Xie M. ; Xu H. ; Li H. Appl. Surf. Sci. 2019, 469, 739.
doi: 10.1016/j.apsusc.2018.11.062 |
27 |
Cao S. ; Huang Q. ; Zhu B. ; Yu J. J. Power Sources. 2017, 351, 151.
doi: 10.1016/j.jpowsour.2017.03.089 |
28 |
Zheng Y. ; Lin L. ; Wang B. ; Wang X. Angew. Chem. Int. Edit. 2015, 54, 12868.
doi: 10.1002/anie.201501788 |
29 |
Yang L. ; Li H. ; Yu Y. ; Yu H. Catal. Commun. 2018, 110, 51.
doi: 10.1016/j.catcom.2018.03.014 |
30 |
Jiang L. ; Yuan X. ; Pan Y. ; Liang J. ; Zeng G. ; Wu Z. ; Wang H. Appl. Catal. B-Environ. 2017, 217, 388.
doi: 10.1016/j.apcatb.2017.06.003 |
31 |
Jiang J. ; Cao S. ; Hu C. ; Chen C. Chin. J. Catal. 2017, 38, 1981.
doi: 10.1016/S1872-2067(17)62936-X |
32 |
Zhang H. ; Guo L. ; Wang D. ; Zhao L. ; Wan B. ACS Appl. Mater. Inter. 2015, 7, 1816.
doi: 10.1021/am507483q |
33 |
Yan Y. ; Yu Y. ; Huang S. ; Yang Y. ; Yang X. ; Yin S. ; Cao Y. J. Phys. Chem. C 2017, 121, 1089.
doi: 10.1021/acs.jpcc.6b07180 |
34 |
Mao Z. ; Chen J. ; Yang Y. ; Wang D. ; Bie L. ; Fahlman B. D. ACS Appl. Mater. Inter. 2017, 9, 12427.
doi: 10.1021/acsami.7b00370 |
35 |
Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8, 76.
doi: 10.1038/NMAT2317 |
36 |
Tian N. ; Zhang Y. ; Li X. ; Xiao K. ; Du X. ; Dong F. ; Waterhouse G. I. N. ; Zhang T. ; Huang H. Nano Energy 2017, 38, 72.
doi: 10.1016/j.nanoen.2017.05.038 |
37 |
Sun Z. ; Zhu M. ; Fujitsuka M. ; Wang A. ; Shi C. ; Majima T. ACS Appl. Mater. Inter. 2017, 9, 30583.
doi: 10.1021/acsami.7b06386 |
38 |
Kong C. ; Tang L. ; Zhang X. ; Sun S. ; Yang S. ; Song X. ; Yang Z. J. Mater. Chem. A. 2014, 2, 7306.
doi: 10.1039/c4ta00703d |
39 |
Wang W. ; Li G. ; An T. ; Chan D. K. L. ; Yu J. C. ; Wong P. K. Appl. Catal. B-Environ. 2018, 238, 126.
doi: 10.1016/j.apcatb.2018.07.004 |
40 |
Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy Environ Sci. 2012, 5, 6717.
doi: 10.1039/C2EE03479D |
41 |
Akbarzadeh R. ; Fung C. S. L. ; Rather R. A. ; Lo I. M. C. Chem. Eng. J. 2018, 341, 248.
doi: 10.1016/j.cej.2018.02.042 |
[1] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[2] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[3] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[4] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[5] | Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang. Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2207045-0. |
[6] | Jingchao Xiang, Jingjun Li, Xue Yang, Shuiying Gao, Rong Cao. Cationic Ni-MOF-Assembled CdS/PFC-8 Catalyst for Photocatalytic Hydrogen Production with Selective Benzyl Alcohol Oxidation under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2205039-0. |
[7] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[8] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[9] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[10] | Fangxin Yin, Pinquan Qin, Jingsan Xu, Shaowen Cao. Methylene Blue Incorporated Donor-Acceptor g-C3N4 Nanosheet Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212062-. |
[11] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[12] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[13] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[14] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[15] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
|