Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2012083.doi: 10.3866/PKU.WHXB202012083
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Cong Hu, Junbin Hu, Mengran Liu, Yucheng Zhou, Jiasheng Rong, Jianxin Zhou()
Received:
2020-12-30
Accepted:
2021-01-22
Published:
2021-02-01
Contact:
Jianxin Zhou
E-mail:zhoujx@nuaa.edu.cn
About author:
Jianxin Zhou. Email: zhoujx@nuaa.edu.cn; Tel.: +86-25-84895827Supported by:
Cong Hu, Junbin Hu, Mengran Liu, Yucheng Zhou, Jiasheng Rong, Jianxin Zhou. Applications of Graphene in Self-Powered Sensing Systems[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2012083. doi: 10.3866/PKU.WHXB202012083
Table 1
Graphene-based self-powered sensing systems."
Energy supply mechanisms | Type of sensors | Graphene materials | The roles of graphene |
| Strain sensor | Graphene foam, graphene-polymer composite film | Flexible piezoresistive electrode with high conductivity and strain sensitivity |
Humidity sensor | Graphene oxide film | High specific surface area, surface functional groups that can rapidly capture and transfer water molecules | |
| Photodetector | Monolayer / few-layer graphene | Coupling with other semiconductor surfaces to form various Schottky junctions |
Monolayer / few-layer graphene | Transparent conductive electrode with excellent light transmission, conductivity and flexibility | ||
Gas sensor | Graphene film | Doping effect on the adsorption of gas molecules | |
Position sensor | Reduced graphene oxide film | Lateral photovoltaic effect | |
| Deformation sensor | Graphene quantum dot, film | Flexible conductive electrodes |
Pressure sensor | Graphene foam | Highly sensitive piezoresistive performance | |
Touch sensor | Monolayer graphene, interlocked percolative graphene | Building capacitive sensing arrays or piezoresistive sensing arrays | |
Humidity sensor | Graphene-SnS2 composite | Moisture-sensitive conductive network | |
Gas sensor | Graphene-metal oxide composite | Gas-sensitive conductive network | |
| Fluid sensor | Monolayer graphene | Liquid flow-induced electricity (drawing potential) |
Concentration sensor | Monolayer graphene | Ion adsorption on liquid-graphene interface | |
Humidity sensor | Graphene oxide film or framework | Surface functional groups interact with ambient moisture to generate electric signal | |
| Strain sensor | Graphene-polymer composite film | Thermoelectricity and excellent electromechanical coupling performance |
Temperature sensor | Graphene-MoS2 composite film | Thermoelectric and highly conductive layer | |
| Strain sensor | rGO/carbon nanotube hybrid membrane | Highly flexible conductive electrodes |
Fig 1
Applications of graphene in electrochemical self-powered sensors. (a-c) A graphene-foam-based electrochemical tactile sensing battery (TSB), (a) Structure and working principle of the TSB under compression, (b) Output voltage of the TSB under continually compressive strains, (c) Output voltages of the TSB based on the input pressure at 4, 8, 16 and 32 times per unit of 50 s 21. Adapted with permission from Ref. 21. Copyright 2016, Wiley-VCH. (d-f) A flexible zinc wire/NaCl solution/graphene sensing device, (d) The energy generation mechanism of the device without any strains, (e) Current variation of the strain sensor under consecutively stretching and releasing step strain process (0-150% strains), (f) Applications as wearable sensor in the aspects of knee motions monitoring 22. Adapted with permission from Ref. 22. Copyright 2018, WILEY-VCH. (g) A flexible cable lithium-sulfur battery, (h) Power change of (g) under cyclic bending 23. Adapted with permission from Ref. 23. Copyright 2016, Wiley-VCH. (i-k) A Li-Graphene oxide film (Li-GOF) sensing device, (i) Illustration of the electrochemical reaction of the Li-GOF battery after adsorbing H2O, (j, k) The Li-GOF battery was placed beneath the nose of a man to detect breathing, in which the increased and decreased RH were induced by exhalation and inhalation 24. Adapted with permission from Ref. 24. Copyright 2016, The Royal Society of Chemistry."
Fig 2
Graphene-based self-powered photovoltaic devices for optical signal detection. (a) A graphene/Si Schottky junction photodetector, (b) The energy band diagram of (a)25. Adapted with permission from Ref. 25. Copyright 2018, The Royal Society of Chemistry. (c) A graphene/Si nanowires array Schottky junction photodetector 27. Adapted from IOP Publishing. (d) Responsivity of a graphene/Si nanoholes array Schottky junction photodetector 28. (e) A graphene/GaAs nanowires array Schottky junction photodetector, (f) the band alignment of (e) 29. Adapted from AIP Publishing. (g) A graphene/GaAs photodetector with Ag nanoparticles, (h) Responsivity of (g) 30. Adapted from Elsevier. (i) A MoS2/h-BN/graphene heterojunction photodetector, (j) the energy band diagram of (i) 32. Adapted from Elsevier. (k) A graphene/InSe/MoS2 photodetector33. Adapted with permission from Ref. 33. Copyright 2018, The Royal Society of Chemistry. (l) A graphene sandwiched GaSe/WS2 heterostructure photodetector 34. Adapted with permission from Ref. 34. Copyright 2017, Wiley-VCH."
Fig 3
Graphene-based self-powered photovoltaic devices for other signal detection. (a) A graphene-based photovoltaic heterojunction for chemical sensing, (b) Band diagrams according to different gas environments for (a) 35. Adapted with permission from Ref. 35. Copyright 2018, WILEY-VCH. (c) A thick reduced graphene oxide film (TrGOF) for self-powered position-sensitive detection, (d) Energy band diagram of (c) 36."
Fig 4
Graphene-based triboelectric sensors. (a) A triboelectric sensor based on graphene composite electrodes, (b) Open-circuit voltage of the sensor in (a) at different frequencies 37. Adapted with permission from Ref. 37. Copyright 2017, American Chemical Society. (c) A triboelectric sensor made of two layers of graphene/parylene stacked 38. Adapted from IOP Publishing. (d) A triboelectric sensor based on the graphene quantum dot-coated Ag nanowires (G-Ag NWs) network electrode 39. Adapted from Elsevier. (e-g) A PDMS/graphene/PET triboelectric sensor, (e) Schematic of the triboelectric sensor, (f) The VOC with contact of the four different sequences corresponding 'L', 'O', 'V' and 'E' and their raw data, (g) A smart phone displays completed word of 'LOVE' 71. Adapted from Elsevier. (h) A triboelectric sensor based on multilayered reduced graphene oxide/Ag nanowires electrode 73. Adapted from Elsevier. (i-k) A stretchable triboelectric touch sensor consists of two layers of graphene/PET, (i) Schematic of the triboelectric sensor with auxetic design, (j) When the touch sensor is stretched, the length increases by 13.7% and 8.8% in the x- and y-direction, respectively, (k) The result of reducing noise by filter logic to display the character '2' 72. Adapted from Elsevier."
Fig 5
The compound self-driving sensors of graphene sensing units driven by triboelectric units. (a) A single graphene-based supercapacitor sensor driven by TENG, (b) The response time of (a) 20. Adapted with permission from Ref. 20. Copyright 2019, American Chemical Society. (c) A neural tactile sensor composed of TENG and interlocked percolative graphene films, (d) The interaction between (c) and fabric 63. Adapted with permission from Ref. 63. Copyright 2019, American Chemical Society. (e) The graphene foam-based pressure sensor driven by TENG, (f) The resistance and sensitivity of (e) under different stresses 64. Adapted with permission from Ref. 64. Copyright 2020, Wiley-VCH. (g) A SnS2/reduced graphene oxide composite film based humidity sensor driven by TENG 65. Adapted from Elsevier. (h) A ZnO-reduced graphene oxide gas sensor driven by TENG under UV illumination 66. Adapted from Elsevier."
Fig 6
Self-powered sensors based on hydrovoltaic effect of graphene. (a) Waving potential in graphene moving across the surface of seawater, (b) Peak voltages as functions of velocity of graphene insertion into a series of halide sodium solutions 18. Adapted from Nature Publishing Group. (c) Handwriting with a Chinese brush on graphene, (d) Sensing the stroke directions (arrows) by the drawing potentials between electrodes 9. Adapted from Nature Publishing Group. (e) Series connection of three individual graphene/PTFE structures, (f) Output voltage of (e) 44. Adapted with permission from Ref. 44. Copyright 2016, American Chemical Society. (g) A humidity sensor based on pristine graphene oxide film, (h) The voltage outputs of (g) 47. Adapted with permission from Ref. 47. Copyright 2018, The Royal Society of Chemistry. (i-k) A self-powered humidity sensor based on single graphene oxide film (GOF) with a preformed oxygen-containing group gradient, (i) The voltage generated in GOF when the relative humidity changes, (j) Responsive to human breathing increased and decreased relative humidity with exhale and inhale, respectively, (k) Monitoring of respiratory frequency relating to heart rate after different intensity of exercise 45. Adapted with permission from Ref. 45. Copyright 2015, Wiley-VCH."
Fig 7
Graphene-based self-powered sensors with other energy supply methods. (a) A stretchable thermoelectric strain sensor based on graphene-ecoflex nanocomposite film, (b) Current variations of (a) under different strains 48. Adapted from Elsevier. (c) A reduced graphene oxide/CdS nanorod array photodetector based on piezo-phototronic effect, (d) The responsibility change of (c) under different strains 77. Adapted with permission from Ref. 77. Copyright 2018, The Royal Society of Chemistry. (e-g) A self-powered piezoionic strain sensor, (e) Structure and working principle of the sensor, (f) The sensor directly attached to the wrist, (g) Voltage response of the piezoionic sensor on the wrist before and after exercise 50. Adapted with permission from Ref. 50. 2016, WILEY-VCH. (h) A pyroelectric breathing sensor, (i) Open circuit voltage of (h) attached to a N95 breathing mask 78. Adapted with permission from Ref. 78. Copyright 2019, American Chemical Society. (j) A pyro-phototronic photodetector, (k) Temporal response of (j) under time-varying NIR illumination79. Adapted from IOP Publishing."
1 |
Lipomi D. J. ; Vosgueritchian M. ; Tee B. C. K. ; Hellstrom S. L. ; Lee J. A. ; Fox C. H. ; Bao Z. N. Nat. Nanotechnol. 2011, 6 (12), 788.
doi: 10.1038/Nnano.2011.184 |
2 |
Xu J. ; Wang S. H. ; Wang G. J. N. ; Zhu C. X. ; Luo S. C. ; Jin L. H. ; Gu X. D. ; Chen S. C. ; Feig V. R. ; To J. W. F. ; et al Science 2017, 355 (6320), 59.
doi: 10.1126/science.aah4496 |
3 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6 (3), 183.
doi: 10.1038/nmat1849 |
4 |
Bolotin K. I. ; Sikes K. J. ; Jiang Z. ; Klima M. ; Fudenberg G. ; Hone J. ; Kim P. ; Stormer H. L. Solid State Commun 2008, 146 (9-10), 351.
doi: 10.1016/j.ssc.2008.02.024 |
5 |
Balandin A. A. Nat. Mater. 2011, 10 (8), 569.
doi: 10.1038/nmat3064 |
6 |
Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. ; Geim A. K. Science 2008, 320 (5881), 1308.
doi: 10.1126/science.1156965 |
7 |
Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81 (1), 109.
doi: 10.1103/RevModPhys.81.109 |
8 |
Yu X. ; Cheng H. ; Zhang M. ; Zhao Y. ; Qu L. ; Shi G. Nat. Rev. Mater. 2017, 2, 17046.
doi: 10.1038/natrevmats.2017.46 |
9 |
Yin J. ; Li X. ; Yu J. ; Zhang Z. ; Zhou J. ; Guo W. Nat. Nanotechnol. 2014, 9 (5), 378.
doi: 10.1038/nnano.2014.56 |
10 |
Zhang X. M. ; Yang X. L. ; Wang K. Y. J. Mater. Sci. -Mater. Electron. 2019, 30 (21), 19319.
doi: 10.1007/s10854-019-02292-y |
11 |
Li X. ; Hua T. ; Xu B. Carbon 2017, 118, 686.
doi: 10.1016/j.carbon.2017.04.002 |
12 |
Boland C. S. ; Khan U. ; Ryan G. ; Barwich S. ; Charifou R. ; Harvey A. ; Backes C. ; Li Z. ; Ferreira M. S. ; Mobius M. E. ; et al Science 2016, 354 (6317), 1257.
doi: 10.1126/science.aag2879 |
13 |
Liu H. ; Li Y. ; Dai K. ; Zheng G. ; Liu C. ; Shen C. ; Yan X. ; Guo J. ; Guo Z. J. Mater. Chem. C 2016, 4 (1), 157.
doi: 10.1039/c5tc02751a |
14 |
Qiao H. ; Huang Z. ; Ren X. ; Liu S. ; Zhang Y. ; Qi X. ; Zhang H. Adv. Opt. Mater. 2019, 8 (1), 1900765.
doi: 10.1002/adom.201900765 |
15 |
Ye M. ; Zhang Z. ; Zhao Y. ; Qu L. Joule 2018, 2 (2), 245.
doi: 10.1016/j.joule.2017.11.011 |
16 |
Wu Y. ; Luo Y. ; Qu J. ; Daoud W. A. ; Qi T. Nano Energy 2019, 64, 103948.
doi: 10.1016/j.nanoen.2019.103948 |
17 |
Yang S. ; Su Y. ; Xu Y. ; Wu Q. ; Zhang Y. ; Raschke M. B. ; Ren M. ; Chen Y. ; Wang J. ; Guo W. ; et al J. Am. Chem. Soc. 2018, 140 (42), 13746.
doi: 10.1021/jacs.8b07778 |
18 |
Yin J. ; Zhang Z. ; Li X. ; Yu J. ; Zhou J. ; Chen Y. ; Guo W. Nat. Commun. 2014, 5, 3582.
doi: 10.1038/ncomms4582 |
19 |
Xue G. ; Xu Y. ; Ding T. ; Li J. ; Yin J. ; Fei W. ; Cao Y. ; Yu J. ; Yuan L. ; Gong L. ; et al Nat. Nanotechnol. 2017, 12 (4), 317.
doi: 10.1038/nnano.2016.300 |
20 |
Chun S. ; Son W. ; Lee G. ; Kim S. H. ; Park J. W. ; Kim S. J. ; Pang C. ; Choi C. ACS Appl. Mater. Interfaces 2019, 11 (9), 9301.
doi: 10.1021/acsami.8b20143 |
21 |
Wang X. ; Gao J. ; Cheng Z. ; Chen N. ; Qu L. Angew. Chem. Int. Ed. 2016, 55 (47), 14643.
doi: 10.1002/anie.201608163 |
22 |
Wang Y. M. ; Wang Y. ; Yang Y. Adv. Energy Mater. 2018, 8 (22), 1800961.
doi: 10.1002/aenm.201800961 |
23 |
Chong W. G. ; Huang J. Q. ; Xu Z. L. ; Qin X. ; Wang X. ; Kim J.-K. Adv. Funct. Mater. 2017, 27 (4), 1604815.
doi: 10.1002/adfm.201604815 |
24 |
Ye M. ; Cheng H. ; Gao J. ; Li C. ; Qu L. J. Mater. Chem. A 2016, 4 (48), 19154.
doi: 10.1039/c6ta08569e |
25 |
Periyanagounder D. ; Gnanasekar P. ; Varadhan P. ; He J. H. ; Kulandaivel J. J. Mater. Chem. C 2018, 6 (35), 9545.
doi: 10.1039/c8tc02786b |
26 |
Xiang D. ; Han C. ; Hu Z. ; Lei B. ; Liu Y. ; Wang L. ; Hu W. P. ; Chen W. Small 2015, 11 (37), 4829.
doi: 10.1002/smll.201501298 |
27 |
Chaliyawala H. ; Aggarwal N. ; Purohit Z. ; Patel R. ; Gupta G. ; Jaffre A. ; Le Gall S. ; Ray A. ; Mukhopadhyay I. Nanotechnology 2020, 31 (22), 225208.
doi: 10.1088/1361-6528/ab767f |
28 |
Zeng L. ; Xie C. ; Tao L. ; Long H. ; Tang C. ; Tsang Y. H. ; Jie J. Opt. Express 2015, 23 (4), 4839.
doi: 10.1364/OE.23.004839 |
29 |
Wu Y. ; Yan X. ; Zhang X. ; Ren X. Appl. Phys. Lett. 2016, 109, 183101.
doi: 10.1063/1.4966899 |
30 |
Lu Y. ; Feng S. ; Wu Z. ; Gao Y. ; Yang J. ; Zhang Y. ; Hao Z. ; Li J. ; Li E. ; Chen H. ; et al Nano Energy 2018, 47, 140.
doi: 10.1016/j.nanoen.2018.02.056 |
31 |
Wu J. ; Yang Z. ; Qiu C. ; Zhang Y. ; Wu Z. ; Yang J. ; Lu Y. ; Li J. ; Yang D. ; Hao R. ; et al Nanoscale 2018, 10 (17), 8023.
doi: 10.1039/c8nr00594j |
32 |
Li H. ; Li X. ; Park J. H. ; Tao L. ; Kim K. K. ; Lee Y. H. ; Xu J.-B. Nano Energy 2019, 57, 214.
doi: 10.1016/j.nanoen.2018.12.004 |
33 |
Chen Z. ; Zhang Z. ; Biscaras J. ; Shukla A. J. Mater. Chem. C 2018, 6 (45), 12407.
doi: 10.1039/c8tc04378g |
34 |
Lv Q. ; Yan F. ; Wei X. ; Wang K. Adv. Opt. Mater. 2018, 6 (2), 1700490.
doi: 10.1002/adom.201700490 |
35 |
Lee D. ; Park H. ; Han S. D. ; Kim S. H. ; Huh W. ; Lee J. Y. ; Kim Y. S. ; Park M. J. ; Park W. I. ; Kang C. Y. ; et al Small 2019, 15 (2), e1804303.
doi: 10.1002/smll.201804303 |
36 |
Moon I. K. ; Ki B. ; Yoon S. ; Choi J. ; Oh J. Sci. Rep. 2016, 6, 33525.
doi: 10.1038/srep33525 |
37 |
Yang J. ; Liu P. ; Wei X. ; Luo W. ; Yang J. ; Jiang H. ; Wei D. ; Shi R. ; Shi H. ACS Appl. Mater. Interfaces 2017, 9 (41), 36017.
doi: 10.1021/acsami.7b10373 |
38 |
Liu Z. X. ; Zhao Z. Z. ; Zeng X. W. ; Fu X. L. ; Hu Y. F. J. Phys. D Appl. Phys. 2019, 52, 314002.
doi: 10.1088/1361-6463/ab1faa |
39 |
Xu Z. W. ; Wu C. X. ; Li F. S. ; Chen W. ; Guo T. L. ; Kim T. W. Nano Energy 2018, 49, 274.
doi: 10.1016/j.nanoen.2018.04.059 |
40 |
Zhao X. ; Chen B. ; Wei G. ; Wu J. M. ; Han W. ; Yang Y. Adv. Mater. Technol. 2019, 4 (5), 1800723.
doi: 10.1002/admt.201800723 |
41 |
Chun S. ; Son W. ; Kim H. ; Lim S. K. ; Pang C. ; Choi C. Nano Lett. 2019, 19 (5), 3305.
doi: 10.1021/acs.nanolett.9b00922 |
42 |
Zhang D. ; Xu Z. ; Yang Z. ; Song X. Nano Energy 2020, 67, 104251.
doi: 10.1016/j.nanoen.2019.104251 |
43 |
Su Y. ; Xie G. ; Tai H. ; Li S. ; Yang B. ; Wang S. ; Zhang Q. ; Du H. ; Zhang H. ; Du X. ; et al Nano Energy 2018, 47, 316.
doi: 10.1016/j.nanoen.2018.02.031 |
44 |
Kwak S. S. ; Lin S. ; Lee J. H. ; Ryu H. ; Kim T. Y. ; Zhong H. ; Chen H. ; Kim S. W. ACS Nano 2016, 10 (8), 7297.
doi: 10.1021/acsnano.6b03032 |
45 |
Zhao F. ; Cheng H. ; Zhang Z. ; Jiang L. ; Qu L. Adv. Mater. 2015, 27 (29), 4351.
doi: 10.1002/adma.201501867 |
46 |
Zhao F. ; Liang Y. ; Cheng H. ; Jiang L. ; Qu L. Energ. Environ. Sci. 2016, 9 (3), 912.
doi: 10.1039/c5ee03701h |
47 |
Liang Y. ; Zhao F. ; Cheng Z. ; Deng Y. ; Xiao Y. ; Cheng H. ; Zhang P. ; Huang Y. ; Shao H. ; Qu L. Energy Environ. Sci. 2018, 11 (7), 1730.
doi: 10.1039/c8ee00671g |
48 |
Zhang D. ; Zhang K. ; Wang Y. ; Wang Y. ; Yang Y. Nano Energy 2019, 56, 25.
doi: 10.1016/j.nanoen.2018.11.026 |
49 |
Xie Y. ; Chou T. M. ; Yang W. ; He M. ; Zhao Y. ; Li N. ; Lin Z. H. Semicond. Sci. Technol. 2017, 32 (4), 044003.
doi: 10.1088/1361-6641/aa62f2 |
50 |
Liu Y. ; Hu Y. ; Zhao J. ; Wu G. ; Tao X. ; Chen W. Small 2016, 12 (36), 5074.
doi: 10.1002/smll.201600553 |
51 |
Zhang F. ; Zhang T. F. ; Yang X. ; Zhang L. ; Leng K. ; Huang Y. ; Chen Y. S. Energ. Environ. Sci. 2013, 6 (5), 1623.
doi: 10.1039/c3ee40509e |
52 |
Song Z. M. ; Ma T. ; Tang R. ; Cheng Q. ; Wang X. ; Krishnaraju D. ; Panat R. ; Chan C. K. ; Yu H. Y. ; Jiang H. Q. Nat. Commun. 2014, 5, 3140.
doi: 10.1038/ncomms4140 |
53 |
Wang L. ; Zhang Y. ; Pan J. ; Peng H. S. J. Mater. Chem. A 2016, 4 (35), 13419.
doi: 10.1039/c6ta05800k |
54 |
Lv Z. S. ; Tang Y. X. ; Zhu Z. Q. ; Wei J. Q. ; Li W. L. ; Xia H. R. ; Jiang Y. ; Liu Z. Y. ; Luo Y. F. ; Ge X. ; et al Adv. Mater. 2018, 30 (50), 1805468.
doi: 10.1002/adma.201805468 |
55 |
Mackanic D. G. ; Chang T. H. ; Huang Z. ; Cui Y. ; Bao Z. Chem. Soc. Rev. 2020, 49 (13), 4466.
doi: 10.1039/d0cs00035c |
56 |
Wang B. ; Ruan T. ; Chen Y. ; Jin F. ; Peng L. ; Zhou Y. ; Wang D. ; Dou S. Energy Storage Mater. 2020, 24, 22.
doi: 10.1016/j.ensm.2019.08.004 |
57 |
Zhang P. ; Zhu F. ; Wang F. ; Wang J. ; Dong R. ; Zhuang X. ; Schmidt O. G. ; Feng X. Adv. Mater. 2017, 29 (7), 1604491.
doi: 10.1002/adma.201604491 |
58 |
Qiao H. ; Huang Z. ; Ren X. ; Liu S. ; Zhang Y. ; Qi X. ; Zhang H. Adv. Opt. Mater. 2019, 8 (1), 1900765.
doi: 10.1002/adom.201900765 |
59 |
Tao Z. ; Zhou D. ; Yin H. ; Cai B. ; Huo T. ; Ma J. ; Di Z. ; Hu N. ; Yang Z. ; Su Y. Mat. Sci. Semicond. Process 2020, 111, 104989.
doi: 10.1016/j.mssp.2020.104989 |
60 |
Li J. ; Yuan S. ; Tang G. ; Li G. ; Liu D. ; Li J. ; Hu X. ; Liu Y. ; Li J. ; Yang Z. ; et al ACS Appl. Mater. Interfaces 2017, 9 (49), 42779.
doi: 10.1021/acsami.7b14110 |
61 |
Huang C. Y. ; Kang C. C. ; Ma Y. C. ; Chou Y. C. ; Ye J. H. ; Huang R. T. ; Siao C. Z. ; Lin Y. C. ; Chang Y. H. ; Shen J. L. ; et al Nanotechnology 2018, 29 (44), 445201.
doi: 10.1088/1361-6528/aadad8 |
62 |
Li Z. ; Zheng Q. ; Wang Z. L. ; Li Z. Research 2020, 2020, 8710686.
doi: 10.34133/2020/8710686 |
63 |
Fan F.-R. ; Tian Z. Q. ; Lin Wang Z. Nano Energy 2012, 1 (2), 328.
doi: 10.1016/j.nanoen.2012.01.004 |
64 |
Chang J. ; Meng H. ; Li C. ; Gao J. ; Chen S. ; Hu Q. ; Li H. ; Feng L. Adv. Mater. Technol. 2020, 5 (5), 1901087.
doi: 10.1002/admt.201901087 |
65 |
Sun C. H. ; Shi Q. F. ; Hasan D. ; Yazici M. S. ; Zhu M. L. ; Ma Y. M. ; Dong B. W. ; Liu Y. F. ; Lee C. Nano Energy 2019, 58, 612.
doi: 10.1016/j.nanoen.2019.01.096 |
66 |
Jiang C. ; Li X. ; Yao Y. ; Lan L. ; Shao Y. ; Zhao F. ; Ying Y. ; Ping J. Nano Energy 2019, 66, 104121.
doi: 10.1016/j.nanoen.2019.104121 |
67 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321 (5887), 385.
doi: 10.1126/science.1157996 |
68 |
Stanford M. G. ; Li J. T. ; Chyan Y. ; Wang Z. ; Wang W. ; Tour J. M. ACS Nano 2019, 13 (6), 7166.
doi: 10.1021/acsnano.9b02596 |
69 |
Parandeh S. ; Kharaziha M. ; Karimzadeh F. Nano Energy 2019, 59, 412.
doi: 10.1016/j.nanoen.2019.02.058 |
70 |
Guo H. ; Li T. ; Cao X. ; Xiong J. ; Jie Y. ; Willander M. ; Cao X. ; Wang N. ; Wang Z. L. ACS Nano 2017, 11 (1), 856.
doi: 10.1021/acsnano.6b07389 |
71 |
Chu H. ; Jang H. ; Lee Y. ; Chae Y. ; Ahn J. H. Nano Energy 2016, 27, 298.
doi: 10.1016/j.nanoen.2016.07.009 |
72 |
Lee Y. ; Kim J. ; Jang B. ; Kim S. ; Sharma B. K. ; Kim J. H. ; Ahn J. H. Nano Energy 2019, 62, 259.
doi: 10.1016/j.nanoen.2019.05.039 |
73 |
Zhou K. K. ; Zhao Y. ; Sun X. P. ; Yuan Z. Q. ; Zheng G. Q. ; Dai K. ; Mi L. W. ; Pan C. F. ; Liu C. T. ; Shen C. Y. Nano Energy 2020, 70, 104546.
doi: 10.1016/j.nanoen.2020.104546 |
74 |
Zhang Z. ; Li X. ; Yin J. ; Xu Y. ; Fei W. ; Xue M. ; Wang Q. ; Zhou J. ; Guo W. Nat. Nanotechnol. 2018, 13 (12), 1109.
doi: 10.1038/s41565-018-0228-6 |
75 |
Yin J. ; Zhou J. ; Fang S. ; Guo W. Joule 2020, 4 (9), 1852.
doi: 10.1016/j.joule.2020.07.015 |
76 |
Zhong H. ; Xia J. ; Wang F. ; Chen H. ; Wu H. ; Lin S. Adv. Funct. Mater. 2017, 27 (5), 1604226.
doi: 10.1002/adfm.201604226 |
77 |
Yu X. ; Yin H. ; Li H. ; Zhao H. ; Li C. ; Zhu M. J. Mater. Chem. C 2018, 6 (3), 630.
doi: 10.1039/c7tc05224c |
78 |
Roy K. ; Ghosh S. K. ; Sultana A. ; Garain S. ; Xie M. Y. ; Bowen C. R. ; Henkel K. ; Schmeisser D. ; Mandal D. ACS Appl. Nano Mater. 2019, 2 (4), 2013.
doi: 10.1021/acsanm.9b00033 |
79 |
Sahatiya P. ; Shinde A. ; Badhulika S. Nanotechnology 2018, 29 (32), 325205.
doi: 10.1088/1361-6528/aac65b |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[3] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[4] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[5] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[6] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[7] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[8] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[9] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[10] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[11] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[12] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[13] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[14] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[15] | Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008018-. |
|