ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2010,Vol.26>> Issue(11)>> 2857-2864     doi: 10.3866/PKU.WHXB20101129         中文摘要
Invited Aticle
[an error occurred while processing this directive] [an error occurred while processing this directive]
Simple Chemical Model for Facilitated Transport with an Application to Wyman-Murray Facilitated Diffusion
COLE Christine Lind, QIAN Hong
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
Full text: PDF (795KB) HTML Export: BibTeX | EndNote (RIS) Supporting Info
A simple chemical kinetic model is developed which describes the behavior of small ligands that can bind reversibly with large carrier molecules with slower intrinsic rates of transport. Under certain conditions, which we describe, the presence of the slower carriers in fact enhances the transport of the ligand. This is the chemical version of Wyman-Murray's facilitated diffusion. The simple model illuminates the driven nature of the enhancement of the transport by the carrier molecules: we show that the facilitated transport depends crucially on a“grand canonical” setting in which the free ligand concentrations are kept constant in the presence of the facilitating protein, in contrast to a canonical setting with constant total ligand concentrations. Results from the simple model are compared to previous experimental and theoretical results for Wyman-Murray facilitated diffusion of oxygen and carbon monoxide in muscle. A relation is established between the association-dissociation rates and the down-stream ligand concentration, or back pressure for oxygen, required for the facilitation effect to occur.


Keywords: Facilitated diffusion   Transport   Chemical kinetic model   Grand canonical ensemble  
Received: 2010-07-30 Accepted: 2010-09-13 Publication Date (Web): 2010-10-11
Corresponding Authors: COLE Christine Lind, QIAN Hong Email:,

Fund: The project was supported in part by NSF grants, USA(DMS9810726, DGE0338322AM07).

Cite this article: COLE Christine Lind, QIAN Hong. Simple Chemical Model for Facilitated Transport with an Application to Wyman-Murray Facilitated Diffusion[J]. Acta Phys. -Chim. Sin., 2010,26 (11): 2857-2864.    doi: 10.3866/PKU.WHXB20101129

1. Keener, J. P.; Sneyd, J. Mathematical physiology: cellular physiology, interdisciplinary applied mathematics. NewYork: Springer-Verlag, 1998
2. Fersht, A. Enzyme structure and mechanism. 2nd ed. NewYork: W. H. Freeman and Company, 1985
3. Roughton, F. Proc. R. Soc. Lond. B, 1932, 111: 1
4. Wittenberg, J. B. J. Biol. Chem., 1966, 241: 104
5. Wittenberg, J. B. Physiol. Rev., 1970, 50: 559
6. Hemmingsen, E. Comp. Biochem. Physiol., 1963, 10: 239
7. Scholander, P. Science, 1965, 149: 876
8. Murray, J. D. Proc. R. Soc. Lond. B-Biol. Sci., 1971, 178: 95
9. Wyman, J. J. Biol. Chem., 1966, 241: 115
10. Rubinow, S. I.; Dembo, M. Biophys. J., 1977, 18: 29
11. Kreuzer, F.; Hoofd, L. J. Respir. Physiol., 1970, 8: 280
12. Murray, J. D.; Wyman, J. J. Biol. Chem., 1971, 246: 5903
13. Murray, J. J. Theoret. Biol., 1974, 47: 115
14. Fletcher, J. E. Biophys. J., 1980, 29: 437
15. Meyer, R. A.; Sweeney, H. L.; Kushmerick, M. J. Am. J. Physiol., 1984, 246: C365
16. Qian, H. Annu. Rev. Phys. Chem., 2007, 58: 113
17. Hill, T. L. Linear aggregation theory in cell biology. NewYork: Springer-Verlag, 1987
18. King, E. L.; Altman, C. J. Phys. Chem., 1956, 60: 1375
19. Hill, T. L. Free energy transduction and biochemical cycle kinetics. New York: Dover Publications, 2004
20. Qi, F.; Dash, R. K.; Han, Y.; Beard, D. A. BMC Bioinformatics, 2009, 10: 238
21. Murray, J. D. Mathematical biology I: an introduction. 3rd ed. New York: Springer, 2007
22. Nedelman, J.; Rubinow, S. I. J. Math. Biol., 1981, 12: 73
23. Riveros-Moreno, V.; Wittenberg, J. B. J. Biol. Chem., 1972, 247: 895
24. Britton, N. F. Nonlinear Analysis, Theory, Methods& Applications. 1979, 3: 361
25. Kreuzer, F.; Hoofd, L. Adv. Exp. Med. Biol., 1976, 75: 207
26. Mochizuki, M.; Forster, R. E. Science, 1962, 138: 897

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top