Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (5): 1905017.doi: 10.3866/PKU.WHXB201905017
Special Issue: Sodium Ion Energy Storage Materials and Devices
• Review • Previous Articles Next Articles
Wenli Pan,Wenhao Guan,Yinzhu Jiang*()
Received:
2019-05-02
Accepted:
2019-06-18
Published:
2019-06-24
Contact:
Yinzhu Jiang
E-mail:yzjiang@zju.edu.cn
Supported by:
Wenli Pan,Wenhao Guan,Yinzhu Jiang. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica 2020, 36(5), 1905017. doi: 10.3866/PKU.WHXB201905017
Table 1
Structures and sodium ion diffusion coefficients of polyanion cathodes for sodium ion batteries."
Chemical formula | Space group | Dimensions of ion channels | Sodium diffusion coefficient/(cm2·s?1) | Ref. | |
Phosphates | Maricite-NaFePO4 | Pnma | none | 4.79 × 10?11 (nano amorphous particles) | |
Olivine-NaFePO4 | Pnma | one | 8.63 × 10?17 | ||
Na2FeP2O7 | P${\rm{\bar 1}}$ | three | (2.79–8.45) × 10?13 | ||
Na2CoP2O7 | P${\rm{\bar 1}}$ | three | / | ||
P21cn | two | / | |||
P42/mnm | three | / | |||
Na3V2(PO4)3 | R${\rm{\bar 3}}$cH | three | 4.59 × 10?13–2.45 × 10?10 | ||
Na3V2(PO4)2F3 | P42/mnm | three | 2.68 × 10?12 | ||
Na3(VO)2(PO4)2F | P42/mnm | three | (1–3) × 10?10 | ||
Sulfates | Na2Fe(SO4)2·2H2O | P21/c | two | 10?14 | |
Na2Fe(SO4)2·4H2O | P21/c | one | / | ||
NaFe(SO4)2 | C12/m1 | two | 9.01 × 10?10 (1273 K) | ||
Na2+2xFe2?x(SO4)3 | P21/c | three | 1 × 10?7 | ||
Orthosilicate | Na2FeSiO4 | P${\rm{\bar 1}}$ | three | (1.92–2.53) × 10?13 | |
Na2MnSiO4 | Pn | one | 2.37 × 10?15–8.62 × 10?14 | ||
Na2CoSiO4 | Pn2a | Three | 1.29 × 10?13–1.06 × 10?12 |
Table 2
Rate performance of polyanion cathodes for sodium ion batteries."
Chemical formula | Theoretical Capacity/(mAh?g?1) | Materials and ways to improve rate performance | Electrochemical data | Ref. |
Maricite-NaFePO4 | 150 | Nano-NaFePO4 (50 nm)/C | 142 mAh?g?1 at C/20 and 60 mAh?g?1 at 2C | |
Nano-NaFePO4 (40–140 nm)/C/graphene | 142 mAh?g?1 at C/20 and 51 mAh?g?1 at 5C | |||
Nano-NaFePO4 (1.6 nm) @ porous N-doped carbon nanofibers | 145 mAh?g?1 at 0.2C and 61 mAh?g?1 at 50C | |||
Oviline-NaFePO4 | 150 | Bare NaFePO4 | 125 mAh?g?1 at 7.5 mA?g?1 | |
Polythiophene-Wrapped NaFePO4 | 141 mAh?g?1 at 10 mA?g?1 and 42 mAh?g?1 at 300 mA?g?1 | |||
Na2FeP2O7 | 97 | Na2FeP2O7 (300-500 nm)/C | 82 mAh?g?1 at C/20 and 50 mAh?g?1 at 10C | |
Na2FeP2O7/MWCNT | 86 mAh?g?1 at 1C and 68 mAh?g?1 at 10C | |||
Na3V2(PO4)3 | 118 | Na3V2(PO4)3/C | 93 mAh?g?1 at C/20 and 29 mAh?g?1 at 1C | |
Na3V2(PO4)3 (20-40 nm) @ Porous Carbon Matrix | 102 mAh?g?1 at 20C and 44 mAh?g?1 at 200C | |||
Na3V2(PO4)3 (50-200 nm) @C@rGO | 115 mAh?g?1 at 20C and 86 mAh?g?1 at 100C | |||
Na3V2(PO4)2F3 | 128 | Core/double-shell structured Na3V2(PO4)2F3@C | 120 mAh?g?1 at 1C and 63 mAh?g?1 at 100C | |
Na3(VO)2(PO4)2F | 130 | Na3(VO)2(PO4)2F /C | 102 mAh?g?1 at 20C and 68 mAh?g?1 at 1C | |
Graphene quantum dots-shielded Na3(VO)2(PO4)2F @C nanocuboids | 102 mAh?g?1 at 20C and 70 mAh?g?1 at 45C | |||
Na2Fe(SO4)2· 2H2O | 82 | Bare- Na2Fe(SO4)2·2H2O | 70 mAh?g?1 at C/20 | |
Na2Fe(SO4)2·2H2O@ zero-, one and two-dimensional carbon matrix (activated carbon, single wall carbon nanotubes and graphene) | 60 mAh?g?1 at 5C | |||
Na2+2xFe2-x(SO4)3 (x = 0–0.4) | 120 | Bare Na2+2xFe2?x(SO4)3 | 102 mAh?g?1 at C/20 and 58 mAh?g?1 at 20C | |
Na2+2xFe2?x(SO4)3/SWNT | 60 mAh?g?1 at 40C | |||
Na2FeSiO4 | 276 | Na2FeSiO4 (30–50 nm)/C | 106 mAh?g?1 at 10 mA?g?1 and 40 mAh?g?1 at 200 mA?g?1 | |
Na2FeSiO4 (20–50 nm)/C | 106 mAh?g?1 at 27.6 mA g?1 (0.1C) and 100 mAh?g?1 at 276 mA?g?1 (1C) | |||
mesoporous Na2FeSiO4 nanospheres @ carbon nanotubes | 173 mAh?g?1 at 0.1C and 109 mAh?g?1 at 20C | |||
Na2MnSiO4 | 280 | Na2MnSiO4 with 5% (volume percent) VC electrolyte additive | 210 mAh?g?1 at 0.1C and 100 mAh?g?1 at 5C | |
three-dimensionally ordered macroporous Na2MnSiO4/C | 207 mAh?g?1 at 0.1C and 76 mAh?g?1 at 5C |
1 |
Evans A. ; Strezov V. ; Evans T. J. Renew. Sust. Energ. Rev. 2012, 16, 4141.
doi: 10.1016/j.rser.2012.03.048 |
2 |
Liu J. ; Zhang J. G. ; Yang Z. ; Lemmon J. P. ; Imhoff C. ; Graff G. L. ; Li L. ; Hu J. ; Wang C. ; Xiao J. Adv. Funct. Mater. 2013, 23, 929.
doi: 10.1002/adfm.201200690 |
3 |
Ellis B. L. ; Nazar L. F. Curr. Opin. Solid State Mat. Sci. 2012, 16, 168.
doi: 10.1016/j.cossms.2012.04.002 |
4 |
Xiang X. ; Zhang K. ; Chen J. Adv. Mater. 2015, 27, 5343.
doi: 10.1002/adma.201501527 |
5 |
Guo S. P. ; Li J. C. ; Xu Q. T. ; Ma Z. ; Xue H. G. J. Power Sources 2017, 361, 285.
doi: 10.1016/j.jpowsour.2017.07.002 |
6 |
Wang P. F. ; You Y. ; Yin Y. X. ; Guo Y. G. Adv. Energy Mater. 2018, 8.
doi: 10.1002/aenm.201701912 |
7 |
Jiang Y. ; Yu S. ; Wang B. ; Li Y. ; Sun W. ; Lu Y. ; Yan M. ; Song B. ; Dou S. Adv. Funct. Mater. 2016, 26, 5315.
doi: 10.1002/adfm.201600747 |
8 |
Wang B. ; Han Y. ; Wang X. ; Bahlawane N. ; Pan H. ; Yan M. ; Jiang Y. iScience 2018, 3, 110.
doi: 10.1016/j.isci.2018.04.008 |
9 |
Barpanda P. ; Lander L. ; Nishimura S. I. ; Yamada A. Adv. Energy Mater. 2018, 8, 1703055.
doi: 10.1002/aenm.201703055 |
10 |
Masquelier C. ; Croguennec L. Chem. Rev. 2013, 113, 6552.
doi: 10.1021/cr3001862 |
11 |
Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev. 2014, 114, 11636.
doi: 10.1021/cr500192f |
12 |
Ouyang X. ; Lei M. ; Shi S. ; Luo C. ; Liu D. ; Jiang D. ; Ye Z. ; Lei M. J. Alloy. Compd. 2009, 476, 462.
doi: 10.1016/j.jallcom.2008.09.028 |
13 |
Balke N. ; Jesse S. ; Morozovska A. ; Eliseev E. ; Chung D. ; Kim Y. ; Adamczyk L. ; Garcia R. ; Dudney N. ; Kalinin S. Nat. Nanotechnol. 2010, 5, 749.
doi: 10.1038/nnano.2010.174 |
14 |
Padhi A. K. ; Nanjundaswamy K. S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144, 1188.
doi: 10.1149/1.1837571 |
15 |
Yamada A. ; Chung S. C. ; Hinokuma K. J. Electrochem. Soc. 2001, 148, A224.
doi: 10.1149/1.1348257 |
16 |
Huang H. ; Yin S. C. ; Nazar L. S. Electrochem. Solid State Lett. 2001, 4, A170.
doi: 10.1149/1.1396695 |
17 |
Oh S. M. ; Myung S. T. ; Hassoun J. ; Scrosati B. ; Sun Y. K. Electrochem. Commun. 2012, 22, 149.
doi: 10.1016/j.elecom.2012.06.014 |
18 |
Zhu Y. ; Xu Y. ; Liu Y. ; Luo C. ; Wang C. Nanoscale 2013, 5, 780.
doi: 10.1039/C2NR32758A |
19 |
Casas-Cabanas M. ; Roddatis V. V. ; Saurel D. ; Kubiak P. ; Carretero-González J. ; Palomares V. ; Serras P. ; Rojo T. J. Mater. Chem. 2012, 22, 17421.
doi: 10.1039/C2JM33639A |
20 |
Kim J. ; Seo D. H. ; Kim H. ; Park I. ; Yoo J. K. ; Jung S. K. ; Park Y. U. ; Goddard III W. A. ; Kang K. Energy Environ. Sci. 2015, 8, 540.
doi: 10.1039/C4EE03215B |
21 |
Barpanda P. ; Ye T. ; Lu J. ; Yamada Y. ; Chung S. C. ; Nishimura S. ; Okubo M. ; Zhou H. ; Yamada A. ECS Trans. 2013, 50, 71.
doi: 10.1149/05024.0071ecst |
22 |
Barpanda P. ; Liu G. ; Ling C. D. ; Tamaru M. ; Avdeev M. ; Chung S. C. ; Yamada Y. ; Yamada A. Chem. Mat. 2013, 25, 3480.
doi: 10.1021/cm401657c |
23 |
Kim H. ; Park C. S. ; Choi J. W. ; Jung Y. Angew. Chem. Int. Edit. 2016, 55, 6662.
doi: 10.1002/anie.201601022 |
24 |
Gopalakrishnan J. ; Rangan K. K. Chem. Mat. 1992, 4, 745.
doi: 10.1021/cm00022a001 |
25 |
Lim S. Y. ; Kim H. ; Shakoor R. ; Jung Y. ; Choi J. W. J. Electrochem. Soc. 2012, 159, A1393.
doi: 10.1149/2.015209jes |
26 |
Jian Z. ; Yuan C. ; Han W. ; Lu X. ; Gu L. ; Xi X. ; Hu Y. S. ; Li H. ; Chen W. ; Chen D. Adv. Funct. Mater. 2014, 24, 4265.
doi: 10.1002/adfm.201400173 |
27 |
Zhu C. ; Song K. ; van Aken P. A. ; Maier J. ; Yu Y. Nano Lett. 2014, 14, 2175.
doi: 10.1021/nl500548a |
28 |
Zhou W. ; Xue L. ; Lü X. ; Gao H. ; Li Y. ; Xin S. ; Fu G. ; Cui Z. ; Zhu Y. ; Goodenough J. B. Nano Lett. 2016, 16, 7836.
doi: 10.1021/acs.nanolett.6b04044 |
29 |
Gao H. ; Seymour I. D. ; Xin S. ; Xue L. ; Henkelman G. ; Goodenough J. B. J. Am. Chem. Soc. 2018, 140, 18192.
doi: 10.1021/jacs.8b11388 |
30 |
Gover R. ; Bryan A. ; Burns P. ; Barker J. Solid State Ion. 2006, 177, 1495.
doi: 10.1016/j.ssi.2006.07.028 |
31 |
Serras P. ; Palomares V. ; Goñi A. ; de Muro I. G. ; Kubiak P. ; Lezama L. ; Rojo T. J. Mater. Chem. 2012, 22, 22301.
doi: 10.1039/c2jm35293a |
32 |
Chen M. ; Hua W. ; Xiao J. ; Cortie D. ; Chen W. ; Wang E. ; Hu Z. ; Gu Q. ; Wang X. ; Indris S. Nat. Commun. 2019, 10, 1480.
doi: 10.1038/s41467-019-09170-5 |
33 |
Kee Y. ; Dimov N. ; Staykov A. ; Okada S. Mater. Chem. Phys. 2016, 171, 45.
doi: 10.1016/j.matchemphys.2016.01.033 |
34 |
Li S. ; Guo J. ; Ye Z. ; Zhao X. ; Wu S. ; Mi J. X. ; Wang C. Z. ; Gong Z. ; McDonald M. J. ; Zhu Z. ACS Appl. Mater. Interfaces 2016, 8, 17233.
doi: 10.1021/acsami.6b03969 |
35 |
Guan W. ; Pan B. ; Zhou P. ; Mi J. ; Zhang D. ; Xu J. ; Jiang Y. ACS Appl. Mater. Interfaces 2017, 9, 22369.
doi: 10.1021/acsami.7b02385 |
36 |
Chen C. Y. ; Matsumoto K. ; Nohira T. ; Hagiwara R. Electrochem. Commun. 2014, 45, 63.
doi: 10.1016/j.elecom.2014.05.017 |
37 |
Law M. ; Ramar V. ; Balaya P. J. Power Sources 2017, 359, 277.
doi: 10.1016/j.jpowsour.2017.05.069 |
38 |
Zhang D. ; Ding Z. ; Yang Y. ; Zhao S. ; Huang Q. ; Chen C. ; Chen L. ; Wei W. Electrochim. Acta 2018, 269, 694.
doi: 10.1016/j.electacta.2018.03.045 |
39 |
Treacher J. C. ; Wood S. M. ; Islam M. S. ; Kendrick E. Phys. Chem. Chem. Phys. 2016, 18, 32744.
doi: 10.1039/c6cp06777h |
40 |
Rangasamy V. S. ; Thayumanasundaram S. ; Locquet J. P. Electrochim. Acta 2018, 276, 102.
doi: 10.1016/j.electacta.2018.04.166 |
41 |
Reynaud M. ; Ati M. ; Boulineau S. ; Sougrati M. T. ; Melot B. C. ; Rousse G. ; Chotard J. N. ; Tarascon J. M. ECS Trans. 2013, 50, 11.
doi: 10.1149/05024.0011ecst |
42 |
Barpanda P. ; Oyama G. ; Ling C. D. ; Yamada A. Chem. Mat. 2014, 26, 1297.
doi: 10.1021/cm4033226 |
43 |
Meng Y. ; Zhang S. ; Deng C. J. Mater. Chem. A 2015, 3, 4484.
doi: 10.1039/c4ta06711h |
44 |
Meng Y. ; Li Q. ; Yu T. ; Zhang S. ; Deng C. CrystEngComm 2016, 18, 1645.
doi: 10.1039/c5ce02046h |
45 |
Reynaud M. ; Rousse G. ; Abakumov A. M. ; Sougrati M. T. ; Van Tendeloo G. ; Chotard J. N. ; Tarascon J. M. J. Mater. Chem. A 2014, 2, 2671.
doi: 10.1039/c3ta13648e |
46 |
Singh P. ; Shiva K. ; Celio H. ; Goodenough J. B. Energy Environ. Sci. 2015, 8, 3000.
doi: 10.1039/c5ee02274f |
47 |
Yu C. J. ; Choe S. H. ; Ri G. C. ; Kim S. C. ; Ryo H. S. ; Kim Y. J. Phys. Rev. Appl. 2017, 8, 024029.
doi: 10.1103/PhysRevApplied.8.024029 |
48 |
Chong X. Y. ; Jiang Y. ; Feng J. J. Micromech. Mol. Phys. 2017, 2, 1750002.
doi: 10.1142/S2424913017500023 |
49 |
Barpanda P. ; Oyama G. ; Nishimura S. I. ; Chung S. C. ; Yamada A. Nat. Commun. 2014, 5, 4358.
doi: 10.1038/ncomms5358 |
50 |
Oyama G. ; Nishimura S. I. ; Suzuki Y. ; Okubo M. ; Yamada A. ChemElectroChem 2015, 2, 1019.
doi: 10.1002/celc.201500036 |
51 |
Meng Y. ; Yu T. ; Zhang S. ; Deng C. J. Mater. Chem. A 2016, 4, 1624.
doi: 10.1039/c5ta07696j |
52 |
Dwibedi D. ; Ling C. D. ; Araujo R. B. ; Chakraborty S. ; Duraisamy S. ; Munichandraiah N. ; Ahuja R. ; Barpanda P. ACS Appl. Mater. Interfaces 2016, 8, 6982.
doi: 10.1021/acsami.5b11302 |
53 |
Prosini P. P. ; Lisi M. ; Zane D. ; Pasquali M. Solid State Ion. 2002, 148, 45.
doi: 10.1016/S0167-2738(02)00134-0 |
54 |
Deiss E. Electrochim. Acta 2005, 50, 2927.
doi: 10.1016/j.electacta.2004.11.042 |
55 |
Yang Z. ; Feng Y. ; Li Z. ; Sang S. ; Zhou Y. ; Zeng L. J. Electroanal. Chem. 2005, 580, 340.
doi: 10.1016/j.jelechem.2005.04.004 |
56 |
Das S. ; Majumder S. ; Katiyar R. J. Power Sources 2005, 139, 261.
doi: 10.1016/j.jpowsour.2004.06.056 |
57 |
Longoni G. ; Wang J. E. ; Jung Y. H. ; Kim D. K. ; Mari C. M. ; Ruffo R. J. Power Sources 2016, 302, 61.
doi: 10.1016/j.jpowsour.2015.10.033 |
58 |
Li G. ; Jiang D. ; Wang H. ; Lan X. ; Zhong H. ; Jiang Y. J. Power Sources 2014, 265, 325.
doi: 10.1016/j.jpowsour.2014.04.054 |
59 |
Song W. ; Ji X. ; Wu Z. ; Yang Y. ; Zhou Z. ; Li F. ; Chen Q. ; Banks C. E. J. Power Sources 2014, 256, 258.
doi: 10.1016/j.jpowsour.2014.01.025 |
60 |
Deng G. ; Chao D. ; Guo Y. ; Chen Z. ; Wang H. ; Savilov S. V. ; Lin J. ; Shen Z. X. Energy Storage Mater. 2016, 5, 198.
doi: 10.1016/j.ensm.2016.07.007 |
61 |
Lu J. ; Yamada A. ChemElectroChem 2016, 3, 902.
doi: 10.1002/celc.201500535 |
62 |
Rahman M. M. ; Sultana I. ; Mateti S. ; Liu J. ; Sharma N. ; Chen Y. J. Mater. Chem. A 2017, 5, 16616.
doi: 10.1039/C7TA04946C |
63 |
Liu Y. ; Zhang N. ; Wang F. ; Liu X. ; Jiao L. ; Fan L. Z. Adv. Funct. Mater. 2018, 28, 1801917.
doi: 10.1002/adfm.201801917 |
64 |
Ali G. ; Lee J. H. ; Susanto D. ; Choi S. W. ; Cho B. W. ; Nam K. W. ; Chung K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422.
doi: 10.1016/j.elecom.2012.06.014 |
65 |
Barpanda P. ; Ye T. ; Nishimura S. I. ; Chung S. C. ; Yamada Y. ; Okubo M. ; Zhou H. ; Yamada A. Electrochem. Commun. 2012, 24, 116.
doi: 10.1021/acsami.6b04014 |
66 |
Jian Z. ; Zhao L. ; Pan H. ; Hu Y. S. ; Li H. ; Chen W. ; Chen L. Electrochem. Commun. 2012, 14, 86.
doi: 10.1016/j.elecom.2011.11.009 |
67 |
Rui X. ; Sun W. ; Wu C. ; Yu Y. ; Yan Q. Adv. Mater. 2015, 27, 6670.
doi: 10.1002/adma.201502864 |
68 |
Liu Q. ; Meng X. ; Wei Z. ; Wang D. ; Gao Y. ; Wei Y. ; Du F. ; Chen G. ACS Appl. Mater. Interfaces 2016, 8, 31709.
doi: 10.1021/acsami.6b11372 |
69 |
Serras P. ; Palomares V. ; Kubiak P. ; Lezama L. ; Rojo T. Electrochem. Commun. 2013, 34, 344.
doi: 10.1016/j.elecom.2013.07.010 |
70 |
Ali B. ; Ghafoor F. ; Shahzad M. I. ; Shah S. K. ; Abbas S. M. J. Power Sources 2018, 396, 467.
doi: 10.1016/j.jpowsour.2018.06.049 |
71 |
Pan W. ; Guan W. ; Liu S. ; Xu B. B. ; Liang C. ; Pan H. ; Yan M. ; Jiang Y. J. Mater. Chem. A 2019, 7, 13197.
doi: 10.1039/C9TA02188D |
72 |
Zhang Y. ; Xia X. ; Liu B. ; Deng S. ; Xie D. ; Liu Q. ; Wang Y. ; Wu J. ; Wang X. ; Tu J. Adv. Energy Mater. 2019, 9, 1803342.
doi: 10.1002/aenm.201803342 |
73 |
Jung Y. H. ; Lim C. H. ; Kim D. K. J. Mater. Chem. A 2013, 1, 11350.
doi: 10.1039/c3ta12116j |
74 |
Zhang J. ; Yuan T. ; Wan H. ; Qian J. ; Ai X. ; Yang H. ; Cao Y. Sci. China Chem. 2017, 60, 1546.
doi: 10.1007/s11426-017-9125-y |
75 |
Li S. ; Dong Y. ; Xu L. ; Xu X. ; He L. ; Mai L. Adv. Mater. 2014, 26, 3545.
doi: 10.1002/adma.201305522 |
76 |
Xu Y. ; Wei Q. ; Xu C. ; Li Q. ; An Q. ; Zhang P. ; Sheng J. ; Zhou L. ; Mai L. Adv. Energy Mater. 2016, 6, 1600389.
doi: 10.1002/aenm.201600389 |
77 |
An Q. ; Xiong F. ; Wei Q. ; Sheng J. ; He L. ; Ma D. ; Yao Y. ; Mai L. Adv. Energy Mater. 2015, 5, 1401963.
doi: 10.1002/aenm.201401963 |
78 |
Fang Y. ; Xiao L. ; Ai X. ; Cao Y. ; Yang H. Adv. Mater. 2015, 27, 5895.
doi: 10.1002/adma.201502018 |
79 |
Jiang T. ; Wei Y. ; Pan W. ; Li Z. ; Ming X. ; Chen G. ; Wang C. J. Alloy. Compd. 2009, 488, L26.
doi: 10.1016/j.jallcom.2009.08.134 |
80 |
Ni J. ; Zhang L. ; Fu S. ; Savilov S. ; Aldoshin S. ; Lu L. Carbon 2015, 92, 15.
doi: 10.1016/j.carbon.2015.02.047 |
81 |
Li Y. D. ; Deng Y. F. ; Pan Z. Y. ; Wei Y. P. ; Zhao S. X. ; Gan L. Acta Phys. -Chim. Sin. 2017, 33, 2293.
doi: 10.3866/PKU.WHXB201705294 |
李亚东; 邓玉峰; 潘智毅; 魏印平; 赵世玺; 干林. 物理化学学报, 2017, 33, 2293.
doi: 10.3866/PKU.WHXB201705294 |
|
82 |
Zhang S. ; Gu H. ; Pan H. ; Yang S. ; Du W. ; Li X. ; Gao M. ; Liu Y. ; Zhu M. ; Ouyang L. Adv. Energy Mater. 2017, 7, 1601066.
doi: 10.1002/aenm.201601066 |
83 |
Zhang S. ; Chen J. ; Tang T. ; Jiang Y. ; Chen G. ; Shao Q. ; Yan C. ; Zhu T. ; Gao M. ; Liu Y. J. Mater. Chem. A 2018, 6, 3610.
doi: 10.1039/C7TA10887G |
[1] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[2] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[3] | Chuanli Wu, Wenhui Liang, Jingjing Fan, Yuxian Cao, Ping Wu, Chenxin Cai. Regulating Electron Transport Band Gaps of Bovine Serum Albumin by Binding Hemin [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1912050-. |
[4] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[5] | Haixia Li,Jiwei Wang,Lifang Jiao,Zhanliang Tao,Jing Liang. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017-. |
[6] | Guifang Zeng,Yining Liu,Chunyan Gu,Kai Zhang,Yongling An,Chuanliang Wei,Jinkui Feng,Jiangfeng Ni. A Nonflammable Fluorinated Carbonate Electrolyte for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905006-. |
[7] | Laiqiang Xu,Jiayang Li,Cheng Liu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905013-. |
[8] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[9] | Rui CHEN,Wei WANG,Tongle BU,Zhiliang KU,Jie ZHONG,Yong PENG,Shengqiang XIAO,Wei YOU,Fuzhi HUANG,Yibing CHENG,Zhengyi FU. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 401-407. |
[10] | Hui LI,Shuangyu LIU,Huiming WANG,Bo WANG,Peng SHENG,Li XU,Guangyao ZHAO,Huitao BAI,Xin CHEN,Yuliang CAO,Zhongxue CHEN. Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1357-1364. |
[11] | Nanshu LIU,Si ZHOU,Jijun ZHAO. Electrical Conductance of Graphene with Point Defects [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1142-1149. |
[12] | Ze YANG,Wang ZHANG,Yue SHEN,Li-Xia YUAN,Yun-Hui HUANG. Next-Generation Energy Storage Technologies and Their Key Electrode Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1062-1071. |
[13] | Mei-Lin. BAI,Ming-Lang. WANG,Shi-Min. HOU. Theoretical Investigation of the Transition Voltages of Cu-Vacuum-Cu Tunneling Junctions [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1474-1482. |
[14] | MIAO Yan-Qin, GAO Zhi-Xiang, WU Yu-Ling, DU Xiao-Gang, LI Yuan-Hao, LIU Hui-Hui, JIA Hu-Sheng, WANG Hua, LIU Xu-Guang. Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode [J]. Acta Phys. -Chim. Sin., 2015, 31(3): 552-558. |
[15] | OUYANG Mi, HUANG Sen-Biao, HAN Yan-Gang, Lü Xiao-Jing, YANG Yuan, DAI Yu-Yu, Lü Yao-Kang, ZHANG Cheng. Enhanced Electrochromic Performance of Ordered Porous Monolayer PBTB Film Using Amine-Modified Polystyrene Spheres as a Template [J]. Acta Phys. -Chim. Sin., 2015, 31(3): 476-482. |
|