Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (10): 1142-1149.doi: 10.3866/PKU.WHXB201810040
Special Issue: Two-Dimensional Materials and Devices
• Article • Previous Articles Next Articles
Nanshu LIU,Si ZHOU*(),Jijun ZHAO
Received:
2018-10-18
Accepted:
2019-02-03
Published:
2018-12-07
Contact:
Si ZHOU
E-mail:sizhou@dlut.edu.cn
Supported by:
Nanshu LIU,Si ZHOU,Jijun ZHAO. Electrical Conductance of Graphene with Point Defects[J]. Acta Physico-Chimica Sinica 2019, 35(10), 1142-1149. doi: 10.3866/PKU.WHXB201810040
"
Point defect | c/nm‒1) | ΔH/eV | Δ/eV | Ge·Ge0−1 |
SW | 0.29 | 4.33 (4.5–5.3) | 0.03 | 0.91 |
0.33 | 4.30 | 0.04 | 0.91 | |
0.39 | 4.34 | 0.05 | 0.79 | |
0.58 | 4.17 | 0.06 | 0.43 | |
0.78 | 4.02 | 0.06 | 0.41 | |
inverse-SW | 0.29 | 4.35 (5.8) | 0.06 | 0.89 |
0.33 | 4.38 | 0.07 | 0.82 | |
0.39 | 4.41 | 0.08 | 0.80 | |
0.58 | 4.51 | 0.12 | 0.38 | |
0.78 | 4.63 | 0.18 | 0.26 | |
SV5-9 | 0.29 | 7.42 (7.3–7.5) | 0.07 | 0.87 |
0.33 | 7.46 | 0.07 | 0.86 | |
0.39 | 7.50 | 0.08 | 0.83 | |
0.58 | 7.54 | 0.11 | 0.40 | |
0.78 | 7.54 | 0.14 | 0.37 | |
SV | 0.29 | 7.64 | 0.09 | 0.75 |
0.33 | 7.70 | 0.10 | 0.66 | |
0.39 | 7.80 | 0.11 | 0.61 | |
0.58 | 7.81 | 0.14 | 0.32 | |
0.78 | 7.88 | 0.19 | 0.29 | |
DV585 | 0.29 | 6.84 (7.2–7.9) | 0.18 | 0.74 |
0.33 | 6.90 | 0.22 | 0.70 | |
0.39 | 6.91 | 0.28 | 0.67 | |
0.58 | 6.82 | 0.29 | 0.28 | |
0.78 | 6.75 | 0.27 | 0.21 | |
DV555777 | 0.29 | 6.13 (6.4–7.5) | 0.33 | 0.38 |
0.33 | 6.21 | 0.37 | 0.38 | |
0.39 | 6.24 | 0.42 | 0.39 | |
0.58 | 6.29 | 0.41 | 0.16 | |
0.78 | 6.34 | 0.43 | 0.12 | |
DV5555-6-7777 | 0.29 | 6.10 (7.0) | 0.27 | 0.50 |
0.33 | 6.16 | 0.31 | 0.45 | |
0.39 | 6.16 | 0.34 | 0.41 | |
0.58 | 5.94 | 0.33 | 0.16 |
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
2 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
3 |
Yi M. ; Shen Z. J. Mater. Chem. A 2015, 3, 11700.
doi: 10.1039/C5TA00252D |
4 |
Muñoz B. R. ; Gómez-aleixandre C. Chem. Vap. Depos. 2013, 19, 297.
doi: 10.1002/cvde.201300051 |
5 |
Zhang Y. ; Zhang L. ; Zhou C. Acc. Chem. Res. 2013, 46, 2329.
doi: 10.1021/ar300203n |
6 |
Park B. J. ; Mitchel W. C. ; Grazulis L. ; Smith H. E. ; Eyink K. G. ; Boeckl J. J. ; Tomich D. H. ; Pacley S. D. ; Hoelscher J. E. Adv. Mater. 2010, 45433, 4140.
doi: 10.1002/adma.201000756a |
7 |
Ugeda M. M. ; Torre F. ; Brihuega I. ; Pou P. ; Martinez-Galera A. J. ; Perez R. ; Gomez-Rodriguez J. M. Phys. Rev. Lett. 2011, 107, 116803.
doi: 10.1103/PhysRevLett.107.116803 |
8 |
Banhart F. ; Kotakoski J. ; Krasheninnikov A. V. ACS Nano 2011, 5, 26.
doi: 10.1021/nn102598m |
9 |
Kotakoski J. ; Mangler C. ; Meyer J. C. Nat. Commun. 2014, 5, 536.
doi: 10.1038/ncomms4991 |
10 |
Robertson A. W. ; Allen C. S. ; Wu Y. A. ; He K. ; Olivier J. ; Neethling J. ; Kirkland A. I. ; Warner J. H. Nat. Commun. 2012, 3, 1144.
doi: 10.1038/ncomms2141 |
11 |
Ugeda M. M. ; Brihuega I. Phys. Rev. Lett. 2010, 104, 96804.
doi: 10.1103/PhysRevLett.104.096804 |
12 |
Stone A. J. ; Wales D. J. Chem. Phys. Lett. 1986, 128, 501.
doi: 10.1016/0009-2614[86]80661-3 |
13 |
Chen J. H. ; Li L. ; Cullen W. G. ; Williams E. D. ; Fuhrer M. S. Nat. Phys. 2011, 7, 535.
doi: 10.1038/nphys1962 |
14 |
Barreiro A. ; Lazzeri M. ; Moser J. ; Mauri F. ; Bachtold A. Phys. Rev. Lett. 2009, 103, 076601.
doi: 10.1103/PhysRevLett.103.076601 |
15 |
Meyer J. C. ; Kisielowski C. ; Erni R. ; Rossell M. D. ; Crommie M. F. ; Zettl A. Nano Lett. 2008, 12, 3582.
doi: 10.1021/nl801386m |
16 |
Kotakoski J. ; Krasheninnikov A. V. ; Kaiser U. ; Meyer J. C. Phys. Rev. Lett. 2011, 106, 105505.
doi: 10.1103/PhysRevLett.106.105505 |
17 |
Lahiri J. ; Lin Y. ; Bozkurt P. ; Oleynik I. I. ; Batzill M. Nat. Nanotechnol. 2010, 5, 326.
doi: 10.1038/nnano.2010.53 |
18 |
Blanc N. ; Jean F. ; Krasheninnikov A. V ; Renaud G. ; Coraux J. Phys. Rev. Lett. 2013, 111, 085501.
doi: 10.1103/PhysRevLett.111.085501 |
19 |
Robertson A. W. ; Montanari B. ; He K. ; Allen C. S. ; Wu Y. A. ; Harrison N. M. ; Kirkland A. I. ; Warner J. H. ACS Nano 2013, 7, 4495.
doi: 10.1021/nn401113r |
20 |
Tan Y. W. ; Zhang Y. ; Bolotin K. ; Zhao Y. ; Adam S. ; Hwang E. H. ; Sarma S. D. ; Stormer H. L. ; Kim P. Phys. Rev. Lett. 2007, 99, 246803.
doi: 10.1103/PhysRevLett.99.246803 |
21 |
Moktadir Z. ; Hang S. ; Mizuta H. Carbon 2015, 93, 325.
doi: 10.1016/j.carbon.2015.05.049 |
22 |
Chen J. H. ; Cullen W. G. ; Jang C. ; Fuhrer M. S. ; Williams E. D. Phys. Rev. Lett. 2009, 102, 236805.
doi: 10.1103/PhysRevLett.102.236805 |
23 |
Cretu O. ; Krasheninnikov A. V. ; Rodríguez-Manzo J. A. ; Sun L. ; Nieminen R. M. ; Banhart F. Phys. Rev. Lett. 2010, 105, 196102.
doi: 10.1103/PhysRevLett.105.196102 |
24 |
Hou Z. ; Wang X. ; Ikeda T. ; Terakura K. ; Oshima M. ; Kakimoto M. Phys. Rev. B 2013, 87, 165401.
doi: 10.1103/PhysRevB.87.165401 |
25 |
Zaminpayma E. ; Razavi M. E. ; Nayebi P. Appl. Surf. Sci. 2017, 414, 101.
doi: 10.1016/j.apsusc.2017.04.065 |
26 |
Pereira V. M. ; Guinea F. ; Lopes Dos Santos J. M. B. ; Peres N. M. R. ; Castro Neto A. H. Phys. Rev. Lett. 2006, 96, 036801.
doi: 10.1103/PhysRevLett.96.036801 |
27 |
Nanda B. R. K. ; Sherafati M. ; Popović Z. S. ; Satpathy S. New J. Phys. 2012, 14, 400.
doi: 10.1088/1367-2630/15/3/039501 |
28 |
Lherbier A. ; Dubois S. M. M. ; Declerck X. ; Roche S. ; Niquet Y. M. ; Charlier J. C. Phys. Rev. Lett. 2011, 106, 046803.
doi: 10.1103/PhysRevLett.106.046803 |
29 |
Skrypnyk Y. V. ; Loktev V. M. Phys. Rev. B 2010, 82, 085436.
doi: 10.1103/PhysRevB.82.085436 |
30 |
Kolasiński K. ; Mreńca-Kolasińska A. ; Szafran B. Phys. Rev. B 2016, 94, 115406.
doi: 10.1103/PhysRevB.94.115406 |
31 |
Gorjizadeh N. ; Farajian A. A ; Kawazoe Y. Nanotechnology 2009, 20, 015201.
doi: 10.1088/0957-4484/20/1/015201 |
32 |
Deretzis I. ; Fiori G. ; Iannaccone G. ; Piccitto G. ; Magna A. L. Phys. E 2012, 44, 981.
doi: 10.1016/j.physe.2010.06.024 |
33 |
Taluja Y. ; SanthiBhushan B. ; Yadav S. ; Srivastava A. Superlattices Microstruct. 2016, 98, 306.
doi: 10.1016/j.spmi.2016.08.044 |
34 |
Chowdhury S. ; Jana D. ; Mookerjee A. Phys. E 2015, 74, 347.
doi: 10.1016/j.physe.2015.07.019 |
35 |
Jamaati M. ; Namiranian A. Comput. Mater. Sci. 2015, 101, 156.
doi: 10.1016/j.commatsci.2015.01.037 |
36 |
Do V. N. ; Dollfus P. J. Appl. Phys. 2009, 106, 023719.
doi: 10.1063/1.3176956 |
37 |
Peng X. Y. ; Ahuja R. Nano Lett. 2008, 8, 4464.
doi: 10.1021/nl802409q |
38 |
Appelhans D. J. ; Carr L. D. ; Lusk M. T. New J. Phys. 2010, 12, 135.
doi: 10.1088/1367-2630/12/12/125006 |
39 |
Datta S. Superlattices Microstruct. 2000, 28, 253.
doi: 10.1006/spmi.2000.0920 |
40 |
Brandbyge M. ; Mozos J. L. ; Ordejón P. ; Taylor J. ; Stokbro K. Phys. Rev. B -Condens. Matter Mater. Phys. 2002, 65, 165401.
doi: 10.1103/PhysRevB.65.165401 |
41 |
Taylor J. ; Guo H. ; Wang J. Phys. Rev. B 2001, 63, 245407.
doi: 10.1103/PhysRevB.63.245407 |
42 |
Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 |
43 | Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995; pp. 88-89. |
44 |
Li T. C. ; Lu S. Phys. Rev. B 2008, 77, 085408.
doi: 10.1103/PhysRevB.77.085408 |
45 |
Carlsson J. M. ; Scheffler M. Phys. Rev. Lett. 2006, 96, 046806.
doi: 10.1103/PhysRevLett.96.046806 |
46 |
Kang J. ; Bang J. ; Ryu B. ; Chang K. J. Phys. Rev. B 2008, 77, 115453.
doi: 10.1103/PhysRevB.77.115453 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[5] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[6] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[7] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[8] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[9] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[12] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[13] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[14] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[15] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
|