物理化学学报 >> 2013, Vol. 29 >> Issue (01): 167-175.doi: 10.3866/PKU.WHXB201210291

催化和表面科学 上一篇    下一篇

具有分级多孔结构和光催化性质的核-壳纳米球(HP-Fe2O3@TiO2)

陈拂晓1, 范伟强2, 周腾云2, 黄卫红1   

  1. 1 江苏大学环境学院, 江苏 镇江 212013;
    2 江苏大学化学化工学院, 江苏 镇江 212013
  • 收稿日期:2012-09-16 修回日期:2012-10-29 发布日期:2012-12-14
  • 通讯作者: 黄卫红 E-mail:fwq4993329@163.com
  • 基金资助:

    国家自然科学基金(21201085);江苏省自然科学基金(BK2012294)和江苏大学本科科研立项基金(Y11A018)资助项目

Core-Shell Nanospheres (HP-Fe2O3@TiO2) with Hierarchical Porous Structures and Photocatalytic Properties

CHEN Fu-Xiao1, FAN Wei-Qiang2, ZHOU Teng-Yun2, HUANG Wei-Hong1   

  1. 1 School of The Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China;
    2 School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China
  • Received:2012-09-16 Revised:2012-10-29 Published:2012-12-14
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21201085), Natural Science Foundation of Jiangsu Province, China (BK2012294), and Jiangsu University College Student Scientific Research Project, China (Y11A018).

摘要:

通过溶剂热和溶胶-凝胶涂层法, 设计并制备了具有分级多孔结构和光催化性质的核-壳纳米球(HP-Fe2O3@TiO2). 透射电子显微镜(TEM)照片证明所得HP-Fe2O3@TiO2样品具备分级多孔结构, 这是因为HP-Fe2O3@TiO2的内核-Fe2O3具有大孔空隙, 同时外壳-TiO2具有介孔空隙. 此外, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)以及氮气吸附-脱附曲线深入研究了HP-Fe2O3@TiO2的结构及其性质. 分别在可见及紫外光照下, 研究了样品在H2O2体系下的光催化降解亚甲基蓝(MB)的性质. 所观察到的HP-Fe2O3@TiO2纳米球的光催化性能, 可归因于核-壳结构的协同作用, 这进一步表明, TiO2外壳对α-Fe2O3的光催化活性有重要影响作用. 在可见光照射下, HP-Fe2O3@TiO2 (1 mL Ti(OC4H9)4 (TBT))具有较优异的光催化活性. 同时, HP-Fe2O3@TiO2 (4mL TBT)具备优异的单分散形貌, 并在紫外光照射下, 表现出最优的光催化活性.

关键词: α-Fe2O3, TiO2, 核-壳纳米小球, 分级多孔结构, 光催化性质, 亚甲基蓝

Abstract:

Core-shell photocatalysts of hierarchical porous nanospheres (HP-Fe2O3@TiO2) have been designed and prepared using solvothermal and sol-gel methods. Transmission electron microscopy (TEM) images confirm that the obtained samples a hierarchical porous structure, which results from both the macroporous structure of the core (Fe2O3) and the mesoporous structure of the shell (TiO2). X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherms were employed to characterize the structure and properties of HP-Fe2O3@TiO2 nanospheres. We investigated the photocatalytic degradation (in the presence of H2O2) of methylene blue (MB) irradiated under visible and ultraviolet light. The observed photocatalytic performance of HP-Fe2O3@TiO2 nanospheres is attributed to the synergetic effects of the core-shell structure, which indicates that the TiO2 shell enhances the photocatalytic performance of α-Fe2O3. HP-Fe2O3@TiO2 (1 mL Ti(OC4H9)4 (TBT)) possesses the highest photodegradation reaction constant among all samples under visible light irradiation. Moreover, HP-Fe2O3@TiO2 (4 mL TBT) has an optimal monodisperse morphology and achieves high photocatalytic activity under ultraviolet light irradiation.

Key words: α-Fe2O3, TiO2, Core-shell nanosphere, Hierarchical porous structure, Photocatalytic property, Methylene blue