物理化学学报 >> 2013, Vol. 29 >> Issue (03): 625-630.doi: 10.3866/PKU.WHXB201212271

光化学和辐射化学 上一篇    下一篇

大气压射频等离子体化学气相沉积TiO2体系的发射光谱诊断

常大磊, 李小松, 赵天亮, 朱爱民   

  1. 大连理工大学等离子体物理化学实验室, 辽宁 大连 116024
  • 收稿日期:2012-10-16 修回日期:2012-12-26 发布日期:2013-02-25
  • 通讯作者: 朱爱民 E-mail:amzhu@dlut.edu.cn
  • 基金资助:

    国家自然科学基金(10835004, 51077009)资助项目

Diagnosis of Emission Spectra on Chemical Vapor Deposition of TiO2 System with Atmospheric-Pressure Radio Frequency Plasma

CHANG Da-Lei, LI Xiao-Song, ZHAO Tian-Liang, ZHU Ai-Min   

  1. Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
  • Received:2012-10-16 Revised:2012-12-26 Published:2013-02-25
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (10835004, 51077009).

摘要:

开展了大气压射频(RF)等离子体化学气相沉积(PCVD)TiO2放电体系的发射光谱诊断研究, 分别考察了氧气分压、钛酸四异丙酯(TTIP)分压和输入功率对氧原子谱线相对强度、氩原子激发温度、OH振动温度以及转动温度的影响. 结果表明: 随着氧气分压的增加, 氧原子谱线相对强度先迅速增加至峰值后缓慢下降, OH振动温度缓慢增加, 而氩原子激发温度和OH转动温度基本不变. 随着TTIP 分压的增加, 氧原子谱线相对强度下降, 氩原子激发温度没有明显变化, 而OH振动温度和转动温度增加. 随着输入功率的增加, 氧原子谱线相对强度下降, 氩原子激发温度、OH振动温度和转动温度升高.

关键词: 大气压射频等离子体, 介质阻挡放电, 等离子体化学气相沉积, 发射光谱诊断, TiO2

Abstract:

Diagnosis of emission spectroscopy on chemical vapor deposition (PCVD) of TiO2 with atmospheric-pressure radio frequency (RF) plasma was studied. The dependences of relative intensity of atomic oxygen line, Ar excitation temperature, OH rotational and vibrational temperatures were investigated on partial pressures of O2 and titanium tetraisopropoxide (TTIP) and input power, respectively. The relative intensity of the atomic oxygen line rapidly increased to a maximum and slowly decreased with increasing O2 partial pressure. OH vibrational temperature gradually increased, whereas Ar excitation temperature and OH rotational temperature showed little change. The relative intensity of the atomic oxygen line decreased, Ar excitation temperature remained constant, and OH vibrational and rotational temperatures increased with increasing TTIP partial pressure. The relative intensity of atomic oxygen line decreased, whereas the Ar excitation temperature and OH vibrational and rotational temperatures increased with increasing input power.

Key words: Atmospheric-pressure radio frequency plasma, Dielectric barrier discharge, Plasma chemical vapour deposition, Diagnosis of optical emission spectrum, TiO2