物理化学学报 >> 2014, Vol. 30 >> Issue (7): 1309-1317.doi: 10.3866/PKU.WHXB201405043

催化和表面科学 上一篇    下一篇

TiO2-Al2O3载体的制备方法对其负载的磷化镍催化剂加氢脱氮反应性能的影响

鄢景森1,2,3, 王海彦1,2, 张静茹2, 徐惠娟3   

  1. 1. 中国石油大学华东化学工程系, 山东青岛 266555;
    2. 辽宁石油化工大学石油化工学院, 辽宁抚顺 113001;
    3. 辽宁科技学院生物医药与化学工程学院, 辽宁本溪 117004
  • 收稿日期:2014-02-11 修回日期:2014-04-30 发布日期:2014-06-30
  • 通讯作者: 王海彦 E-mail:fswhy@126.com

Effect of TiO2-Al2O3 Support Preparation Technique on Hydrodenitrogenation of Ni2P/TiO2-Al2O3 Catalysts

YAN Jing-Sen1,2,3, WANG Hai-Yan1,2, ZHANG Jing-Ru2, XU Hui-Juan3   

  1. 1. Department of Chemical Engineering, China University of Petroleum East China, Qingdao 266555, Shandong Province, P. R. China;
    2. Institute of Petrochemical Technology, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China;
    3. Institute of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning Province, P. R. China
  • Received:2014-02-11 Revised:2014-04-30 Published:2014-06-30
  • Contact: WANG Hai-Yan E-mail:fswhy@126.com

摘要:

采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备. 通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能. 结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P. 不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340 ℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.

关键词: 磷化镍, 二氧化钛, 氧化铝, 复合载体, 共沉淀法, 溶胶-凝胶法, 加氢脱氮

Abstract:

TiO2-Al2O3 composite supports were prepared by in situ sol-gel and co-precipitation methods, and the supported nickel phosphide catalysts were prepared by incipient wetness impregnation and the in situ H2 reduction method. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption (BET), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and inductive couple plasma atomic emission spectrometry techniques (ICP-AES). The hydrodenitrogenation (HDN) activity of the supported nickel phosphide catalysts were evaluated on a continuousflow fixed-bed reactor using quinoline as the model molecule. The results showed that the composite support prepared by the in situ sol-gel method basically retained the original pore properties of γ-Al2O3 but with a larger surface area and decentralized pore size distribution, and TiO2 was enriched on the tubular γ-Al2O3 surface. The composite support prepared by the co-precipitation method had a smaller surface area and a centralized pore size distribution, and TiO2 was evenly dispersed on the massive γ-Al2O3 surface. The main active phases after reduction were Ni2P and Ni12P5 for the catalyst supported on sol-gel prepared TiO2-Al2O3, but only Ni2P for the catalyst supported on co-precipitated TiO2-Al2O3. Different TiO2-Al2O3 preparation techniques and different Ti/Al atomic ratios had a great effect on the HDN activity of the catalysts. The catalyst supported on co-precipitated TiO2-Al2O3 exhibited better reducibility and HDN activity than the catalyst supported on in situ sol-gel prepared TiO2-Al2O3. The optimal HDN activity occurred for the catalyst supported on co-precipitated TiO2-Al2O3 with an initial Ti/Al atomic ratio of 1:8. At a reaction temperature of 340 ℃, pressure of 3 MPa, hydrogen/oil volume ratio of 500, and liquid hourly space velocity of 3 h-1, the HDN conversion of quinoline was 91.3%.

Key words: Nickel phosphide, Titania, Alumina, Composite support, Co-precipitation method, Sol-gel method, Hydrodenitrogenation