物理化学学报 >> 2015, Vol. 31 >> Issue (6): 1086-1092.doi: 10.3866/PKU.WHXB201504162
收稿日期:
2015-01-15
修回日期:
2015-04-15
发布日期:
2015-06-05
通讯作者:
边江鱼, 张景萍
E-mail:bianjy2002@163.com;zhangjp162@nenu.edu.cn
基金资助:
长春师范学院自然科学基金(长师院自科合字[2009]第009 号, 长师院自科合字政策[2010]第030 号)和吉林省教育厅科学技术研究“十二五”规划项目(吉教科合字[2011]第192 号)资助
BIAN Jiang-Yu1, YUE Shu-Mei1, ZHANG Min1, ZHANG Jing-Ping2
Received:
2015-01-15
Revised:
2015-04-15
Published:
2015-06-05
Contact:
BIAN Jiang-Yu, ZHANG Jing-Ping
E-mail:bianjy2002@163.com;zhangjp162@nenu.edu.cn
Supported by:
The project was supported by the Natural Science Foundation of Changchun Normal University, China (2009-009, 2010-030) and“Twelfth Five- Year Plan”Science and Technology Research Projects of Jilin Provincial Department of Education, China (2011-192).
摘要:
结合对称性破损(BS)方法, 采用不同的密度泛函理论(DFT)对反铁磁性μ-1,3-N3-Ni(II)叠氮配合物[LNi2(N3)](ClO4)2 (L=pyrazolate)的磁特性进行了研究. 结果显示, 杂化密度泛函理论(HDFT)的计算结果与实验数据非常吻合, 能够准确描述配合物的磁特性. 磁轨道研究结果表明, 配合物表现出较大的单占据轨道能量劈裂(0.93-0.99 eV), 显示配合物的单占据轨道去简并化程度较大, 且配合物中的2 个磁通道(叠氮基、配体pyrazolate)中都分别存在有氮原子之间的p轨道重叠, 这些都使得体系表现为反铁磁耦合作用. 另外, 配合物的磁性与叠氮桥和两金属离子间形成的二面角(τ, Ni-N-N-N-Ni)密切相关, τ从-55.38°逐渐变化到-1.5°的过程中, 其反铁磁性逐渐增强, 交换耦合常数(Jab)的绝对值逐渐增大, 并在-11.95°处达到最大值(Jab=-151.02 cm-1).在此过程中, 配合物中叠氮桥及其所连接的2个Ni 离子与pyrazolate 基配体L-中的2个桥原子N(4)、N(5)形成的七元环共平面性不断增强, 即共平面性会诱导增强体系的反铁磁相互作用.
边江鱼, 岳淑美, 张敏, 张景萍. 叠氮桥对双核镍配合物磁性影响的密度泛函理论研究[J]. 物理化学学报, 2015, 31(6), 1086-1092. doi: 10.3866/PKU.WHXB201504162
BIAN Jiang-Yu, YUE Shu-Mei, ZHANG Min, ZHANG Jing-Ping. Effects of Azido Bridge on Magnetic Properties of Dinuclear Nickel Complexes: Density Functional Theory Studies[J]. Acta Phys. -Chim. Sin. 2015, 31(6), 1086-1092. doi: 10.3866/PKU.WHXB201504162
(1) Kahn, O. Molecular Magnetism; VCH Publications: New York, 1993. (2) (a) Carroll, R. L.; Gorman, C. B. Angew. Chem. Int. Edit. 2002, 41, 4378. doi: 10.1002/1521-3773(20021202)41:23<4378::AIDANIE4378> 3.0.CO;2-A (b) Bousseksou, A.; Molnár, G.; Matouzenko, G. Eur. J. Inorg. Chem. 2004, 2004, 4353. (c) Zhang, P.; Zhang, L.; Tang, J. K. Dalton Trans. 2015, 44, 3923. (d) Antonis, N. A.; Zacharias, G. F.; Madhu, M. J. Phys.: Condes. Matter 2015, 27, 052202. (3) (a) Umezono, Y.; Fujita, W.; Awaga, K. J. Am. Chem. Soc. 2006, 128, 1084. doi: 10.1021/ja057207i (b) Jeannin, O.; Clérac, R.; Fourmigué, M. J. Am. Chem. Soc. 2006, 128, 14649. (c) Bréfuel, N.; Shova, S.; Tuchagues, J. P. Eur. J. Inorg. Chem. 2007, 2007, 4326. (d) Koner, R.; Hazra, S.; Fleck, M.; Jana, A.; Lucas, C. R.; Mohanta, S. Eur. J. Inorg. Chem. 2009, 2009, 4982. (4) (a) Delferro, M.; Graiff, C.; Marchiò, L.; Elviri, L.; Mazzani, M.; Riccò, M.; Predieri, G. Eur. J. Inorg. Chem. 2011, 2011, 3327. doi: 10.1002/ejic.201100385 (b) Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Suaud, N.; Svoboda, O.; Bastardis, R.; Guihéry, N.; Palacios, J. J. Chem. -Eur. J. 2015, 21, 763. (c) Zhang, Y. Q.; Luo, C. L. Int. J. Quantum Chem. 2006, 106, 1551. (5) (a) Frecus, B.; Oprea, C. I.; Panait, P.; Ferbinteanu, M.; Cimpoesu, F.; Gîr?u, M. A. Theor. Chem. Acc. 2014, 133, 1470. doi: 10.1007/s00214-014-1470-0 (b) Guedes, G. P.; Florencio, A. S.; Carneiro, J.W. M.; Vaz, M. G. F. Solid State Sci. 2013, 18, 10. (c) Triki, S.; Gómez-García, C. J.; Ruiz, E.; Sala-Pala, J. Inorg. Chem. 2005, 44, 5501. (d) Jia, L. H.; Liu, A. C.; Mu, Z. E.; Chen, Y. F. Acta Phys. -Chim. Sin. 2011, 27, 1595. [贾丽慧, 刘安昌, 牟宗娥, 陈云峰. 物理化学学报, 2011, 27, 1595]. doi: 10.3866/PKU.WHXB20110736 (e) James, M.; Brant, C. Inorg. Chim. Acta 2012, 384, 189. (6) (a) Feng, P. L.; Stephenson, C. J.; Amjad, A.; Ogawa, G.; Barco, E. D.; Hendrickson, D. N. Inorg. Chem. 2010, 49, 1304. doi: 10.1021/ic902298y (b) Milios, C. J.; Inglis, R.; Vinslava, A.; Prescimone, A.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. Chem. Commun. 2007, 26, 2738. (c) Sun, H. L.; Wang, Z. M.; Gao, S. Chem. -Eur. J. 2009, 15, 1757. (d) Gu, Z. G.; Song, Y.; Zuo, J. L.; You, X. Z. Inorg. Chem. 2007, 46, 9522. (e) Liu, T. F.; Fu, D.; Gao, S.; Zhang, Y. Z.; Sun, H. L.; Su, G.; Liu, Y. J. J. Am. Chem. Soc. 2003, 125, 13976. (7) (a) Sasmal, S.; Hazra, S.; Kundu, P.; Majumder, S.; Aliaga- Alcalde, N.; Ruiz, E.; Mohanta, S. Inorg. Chem. 2010, 49, 9517. doi: 10.1021/ic101209m (b) Demeshko, S.; Leibeling, G.; Dechert, S.; Meyer, F. Dalton Trans. 2006, 28, 3458. (c) Mukherjee, P. S.; Maji, T. K.; Escuer, A.; Vicente, R.; Ribas, J.; Rosair, G.; Mautner, F. A.; Chaudhuri, N. R. Eur. J. Inorg. Chem. 2002, 2002, 943. (8) (a) Milios, C. J.; Prescimone, A.; Sanchez-Benitez, J.; Parsons, S.; Murrie, M.; Brechin, E. K. Inorg. Chem. 2006, 45, 7053. doi: 10.1021/ic061035o (b) Tandon, S. S.; Bunge, S. D.; Sanchiz, J.; Thompson, L. K. Inorg. Chem. 2012, 51, 3270. (9) (a) Leibeling, G.; Demeshko, S.; Dechert, S.; Meyer, F. Angew. Chem. Int. Edit. 2005, 44, 7111. (b) Demeshko, S.; Leibeling, G.; Maringgele, W.; Meyer, F.; Mennerich, C.; Klauss, H. H.; Pritzkow, H. Inorg. Chem. 2005, 44, 519. (10) (a) Papaefstathiou, G. S.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X.; Perlepes, S. P. Chem. Commun. 2001, 23, 2414. (b) Meyer, F.; Kircher, P.; Pritzkow, H. Chem. Commun. 2003, 6, 774. (c) Zhang, X. M.; Wang, Y. Q.; Song, Y.; Gao, E. Q. Inorg. Chem. 2011, 50, 7284. (d) Brunet, G.; Habib, F.; Cook, C.; Pathmalingam, T.; Loiseau, F.; Korobkov, I.; Burchell, T. J.; Beauchemin, A. M.; Murugesu, M. Chem. Commun. 2012, 48, 1287. (e) Sengupta, O.; Mukherjee, P. S. Inorg. Chem. 2010, 49, 8583. (f) Lin, S. Y.; Zhao, L.; Guo, Y. N.; Zhang, P.; Guo, Y.; Tang, J. K. Inorg. Chem. 2012, 51, 10522. (11) Chakraborty, A.; Rao, L. S.; Manna, A. K.; Pati, S. K.; Ribas, J.; Maji, T. K. Dalton Trans. 2013, 42, 10707. doi: 10.1039/c3dt32526a (12) (a) Mukherjee, S.; Mukherjee, P. S. Dalton Trans. 2013, 42, 4019. doi: 10.1039/c2dt32802j (b) Mukherjee, S.; Mukherjee, P. S. Accounts Chem. Res. 2013, 46, 2556. (c) Mukherjee, S.; Mukherjee, P. S. Cryst. Growth Des. 2014, 14, 4177. (13) (a) Bian, J. Y.; Chang, Y. F.; Zhang, J. P. J. Phys. Chem. A 2008, 112, 3186. doi: 10.1021/jp711121z (b) Noh, E. A. A.; Zhang, J. P. Chem. Phys. 2006, 330, 82. (c) Noh, E. A. A.; Zhang, J. P. Theochem 2009, 896, 54. (d) Noh, E. A. A.; Zhang, J. P. Theochem 2008, 867, 33. (14) (a) Clarke, C. S.; Jornet-Somoza, J.; Mota, F.; Novoa, J. J.; Deumal, M. J. Am. Chem. Soc. 2010, 132, 17817. doi: 10.1021/ja1057746 (b) Onofrio, N.; Mouesca, J. M. Inorg. Chem. 2011, 50, 5577. (c) Sasmal, S.; Hazra, S.; Kundu, P.; Dutta, S.; Rajaraman, G.; Sañudo, E. C.; Mohanta, S. Inorg. Chem. 2011, 50, 7257. (d) Biswas, R.; Mukherjee, S.; Kar, P.; Ghosh, A. Inorg. Chem. 2012, 51, 8150. (e) Pramanik, K.; Malpaharia, P.; Mota, A. J.; Colacio, E.; Das, B.; Lloret, F.; Chandra, S. K. Inorg. Chem. 2013, 52, 3995. (15) Leibeling, G.; Demeshko, S.; Bauer-Siebenlist, B.; Mayer, F.; Pritzkow, H. Eur. J. Inorg. Chem. 2004, 2004, 2413. (16) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03, Revision C.01; Gaussian Inc.: Pittsburgh, PA, 2003. (17) (a) Yin, B.; Li, J. L.; Bai, H. C.; Wen, Z. Y.; Jiang, Z. Y.; Huang, Y. H. Phys. Chem. Chem. Phys. 2012, 14, 1121. doi: 10.1039/C1CP22928A (b) Yu, Y.; Li, C.; Yin, B.; Li, L. J.; Huang, Y. H.; Wen, Z. Y.; Jiang, Z. Y. J. Chem. Phys. 2013, 139, 054305. (18) Ruiz, E.; Cirera, J.; Alvarez, S. Coord. Chem. Rev. 2005, 249, 2649. doi: 10.1016/j.ccr.2005.04.010 (19) Cano, J.; Ruiz, E.; Alvarez, S.; Verdaguer, M. Comments Inorg. Chem. 1998, 20, 27. doi: 10.1080/02603599808032749 (20) Mitani, M.; Mori, H.; Takano, Y.; Yamaki, D.; Yoshioka, Y.; Yamaguchi, K. J. Chem. Phys. 2000, 113, 4035. doi: 10.1063/1.1286418 (21) (a)Willet, R. D.; Gatteschi, D.; Kahn, O. Magneto-Structural Correlations in Exchange Coupled Systems; Reidel: Dordrecht, 1985. (b) O'Connor, C. J. Research Frontiers in Magnetochemistry; World Scientific: Singapore, 1993. (c) Chen, C. T.; Suslick, K. S. Coord. Chem. Rev. 1993, 128, 293. (22) (a) Koner, R.; Lin, H. H.; Wei, H. H.; Mohanta, S. Inorg. Chem. 2005, 44, 3524. doi: 10.1021/ic048196h (b) Nanda, K. K.; Thompson, L. K.; Bridson, J. N.; Nag, K. J. Chem. Soc. Chem. Commun. 1994, 11, 1337. (c) Arriortua, M. I.; Cortés, R.; Mesa, J. L.; Lezama, L.; Rojo, T.; Villeneuve, G. Transition Met. Chem. 1988, 13, 371. |
[1] | 孔维恺忻, 廉靖靖, 彭超, 朱杰, 郑钰琳, 黄巍然, 张博文, 段桂芳, 马琳, 彭晓东, 马维宁, 朱素杰, 黄卓. 联用多步骤虚拟筛选方法发现具有新母核的GABAA受体正性变构调节剂[J]. 物理化学学报, 2024, 40(1): 2302044 - . |
[2] | 冯磊, 朱泽敏, 杨颖, 何宗兵, 邹家丰, 李漫波, 赵燕, 伍志鲲. 长期探寻的Au23(S-Adm)16结构及未曾预期的掺杂效应[J]. 物理化学学报, 0, (): 2305029 - . |
[3] | 尚念泽, 程熠, 敖申, 姑力米热, 李梦文, 王晓愚, 洪浩, 李泽晖, 张晓艳, 符汪洋, 刘开辉, 刘忠范. 基于石墨烯光子晶体光纤的流体传感器[J]. 物理化学学报, 2022, 38(12): 2108041 - . |
[4] | 何文倩, 邸亚, 姜南, 刘遵峰, 陈永胜. 石墨烯诱导水凝胶成核的高强韧人造蛛丝[J]. 物理化学学报, 2022, 38(9): 2204059 - . |
[5] | 彭景淞, 程群峰. 仿鲍鱼壳石墨烯多功能纳米复合材料[J]. 物理化学学报, 2022, 38(5): 2005006 - . |
[6] | 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟[J]. 物理化学学报, 2022, 38(5): 2006064 - . |
[7] | 王磊, 孙毯毯, 闫娜娜, 刘晓娜, 马超, 徐舒涛, 郭鹏, 田鹏, 刘中民. 不同结构导向剂合成不同硅含量SAPO-34分子筛的酸性质[J]. 物理化学学报, 2022, 38(4): 2003046 - . |
[8] | 周蔚, 李运超, 范楼珍, 李晓宏. 硫黄素T与侧翼连接双链DNA的G-四链体高特异性作用[J]. 物理化学学报, 2022, 38(4): 2004017 - . |
[9] | 刘苗苗, 王文娟, 郝秀萍, 董晓燕. Aβ40和hIAPP在溶液和表面的成核与交叉成核聚集行为[J]. 物理化学学报, 2022, 38(3): 2002024 - . |
[10] | 梁涛, 王斌. 层间共价增强石墨烯材料的构筑、性能与应用[J]. 物理化学学报, 2022, 38(1): 2011059 - . |
[11] | 林锦亮, 张雅敏, 张浩力. 单分子器件中的新颖静电场效应[J]. 物理化学学报, 2021, 37(12): 2005010 - . |
[12] | 荆子君, Khai Chen Tan, 何腾, 于洋, 裴启俊, 王金涛, Wu Hui, 陈萍. 吡咯锂的合成、表征及晶体结构[J]. 物理化学学报, 2021, 37(11): 2009039 - . |
[13] | 叶耀坤, 胡宗祥, 刘佳华, 林伟成, 陈涛文, 郑家新, 潘锋. 锂离子电池正极材料中的极化子现象理论计算研究进展[J]. 物理化学学报, 2021, 37(11): 2011003 - . |
[14] | 孙汉涛, 廖建辉, 侯士敏. 基于吡嗪连接的石墨烯电极单分子场效应晶体管[J]. 物理化学学报, 2021, 37(10): 1906027 - . |
[15] | 陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究[J]. 物理化学学报, 2021, 37(10): 2001004 - . |
|