物理化学学报 >> 2021, Vol. 37 >> Issue (10): 2002021.doi: 10.3866/PKU.WHXB202002021
吴智伟1,2, 丁伟璐1, 张雅琴1, 王艳磊1, 何宏艳1,3,*()
收稿日期:
2020-02-19
录用日期:
2020-04-06
发布日期:
2020-04-10
通讯作者:
何宏艳
E-mail:hyhe@ipe.ac.cn
基金资助:
Zhiwei Wu1,2, Weilu Ding1, Yaqin Zhang1, Yanlei Wang1, Hongyan He1,3,*()
Received:
2020-02-19
Accepted:
2020-04-06
Published:
2020-04-10
Contact:
Hongyan He
E-mail:hyhe@ipe.ac.cn
About author:
Hongyan He, Email: hyhe@ipe.ac.cn; Tel.: +86-10-82544875Supported by:
摘要:
离子液体的物理化学性质稳定且结构可调,被认为是潜在的新一代绿色高效生物分子溶剂。本文通过密度泛函理论研究了系列咪唑基离子液体与两性离子型氨基酸(酪氨酸)的相互作用及机理。利用对称微扰理论(SAPT)、分子中的原子理论(AIM)及约化密度梯度函数(RDG),分析了氢键作用、静电力、诱导力和色散力对离子液体-氨基酸体系相互作用的贡献。计算结果表明静电作用对于阴、阳离子与酪氨酸的相互作用占主导地位。对于系列阳离子而言,具有不同的甲基取代位点和烷基侧链长度对不同的相互作用模式会产生显著影响。其中,当甲基位于咪唑环的C2位点时,诱导力与色散力占比差别较小;当甲基取代位于咪唑环的N3位点时,诱导力与色散力占比差别较大。产生这一差异的原因在于当甲基位于C2位时,氢键、咪唑环与苯环之间的π+-π作用为主要作用模式,而甲基取代位为N3位时,氢键和烷基链与苯环之间的CAlkyl-H…π作用则成为主导。进一步获得离子对-酪氨酸的相互作用能变化趋势与阳离子-酪氨酸的变化趋势一致,阴阳离子的共同作用使其与酪氨酸结合更稳定。该研究结果阐明了离子液体中阳离子氢键位点及侧链长度差异对于离子液体-酪氨酸体系的相互作用模式的影响机制,为高效分离氨基酸的功能性离子液体的设计和筛选提供了新思路。
吴智伟, 丁伟璐, 张雅琴, 王艳磊, 何宏艳. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2021, 37(10), 2002021. doi: 10.3866/PKU.WHXB202002021
Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 2002021. doi: 10.3866/PKU.WHXB202002021
Fig 2
The electrostatic potential of anion, Tyr and cations (a) and the electrostatic potential distributions of cations (b). The van der Waals ESP of each species are mapped under 0.001 a.u. electron density equivalent surface and the unit of the ESP label in Fig. 2a is kJ·mol-1. The positive electrostatic potential is colored by blue, and the negative electrostatic potential is colored by red, while the green represents the neutral electrostatic potential area. Color online. "
Table 1
The charge distribution of critical H atom on the imidazole ring in each cation by natural population analysis."
R-H | C4-3mim | C4-2mim | C12-3mim | C12-2mim |
-C2-H | 0.271 | N/A | 0.271 | N/A |
-N3-H | N/A | 0.478 | N/A | 0.478 |
-C4-H | 0.267 | 0.267 | 0.266 | 0.267 |
-C5-H | 0.267 | 0.266 | 0.267 | 0.266 |
-CH3-H1 | 0.230 | 0.258 | 0.230 | 0.257 |
-CH3-H2 | 0.232 | 0.260 | 0.232 | 0.259 |
-CH3-H3 | 0.235 | 0.257 | 0.235 | 0.257 |
Table 2
The distances and angles of H-bond in the cation-Tyr and anion-Tyr complexes, as well as the related intermolecular interaction energy."
Complex | H-bond | Distance/nm | Angle/(°) | ΔEIon-Tyr/(kJ·mol-1) |
C4-3mim-Tyr | C2-H…OCOO | 0.233 | 155.0 | -44.96 |
C4-2mim-Tyr | N3-H…OCOO | 0.168 | 174.7 | -57.31 |
C12-3mim-Tyr | C2-H…OCOO | 0.226 | 151.3 | -64.23 |
CAlkyl-H…OOH | 0.270 | 132.7 | N/A | |
C12-2mim-Tyr | N3-H…OCOO | 0.169 | 168.9 | -61.14 |
BF4-Tyr | NTyr-H…F1 | 0.252 | 106.9 | -31.75 |
NTyr-H…F2 | 0.190 | 161.8 | N/A | |
CAmino-H…F1 | 0.249 | 124.6 | N/A |
Table 3
The electron density (ρBCP) and the associated value of Laplacian (▽2ρBCP), as well as the potential energy density (HBCP) at the bond critical point in cation-Tyr and anion-Tyr complexes."
Ion-Tyr | H-bond | ρBCP/(a.u.) | ▽2ρBCP/(a.u.) | HBCP/(10-3 a.u.) |
C4-3mim-Tyr | C2-H…OCOO | 0.011 | 0.039 | 1.437 |
C4-2mim-Tyr | N3-H…OCOO | 0.047 | 0.137 | -5.634 |
C12-3mim-Tyr | C2-H…OCOO | 0.014 | 0.047 | 1.626 |
CAlkyl-H…OOH | 0.007 | 0.021 | 0.491 | |
C12-2mim-Tyr | N3-H…OCOO | 0.045 | 0.138 | -4.675 |
BF4-Tyr | NTyr-H…F1 | N/A | N/A | N/A |
NTyr-H…F2 | 0.023 | 0.098 | 2.025 | |
CAmino-H…F1 | 0.008 | 0.031 | 1.049 |
Fig 6
The RDG scatter plot and surface plot of each cation-Tyr and anion-Tyr complexes (a-e). The isovalue of scatter plots and surface plots is 0.5 a.u., the blue regions and green regions in the right of the corresponding 3D plots represent a strong electrostatic interaction and a more dispersion attractive interaction, respectively. Color online. "
Fig 8
RDG scatter plot and surface plot of each IL-Tyr complexes. The isovalue of scatter plots and surface plots is 0.5 a.u., the blue regions and green regions in the right of the corresponding 3D plots represent a strong electrostatic interaction and a more dispersion attractive interaction, respectively. Color online. "
Table 4
The electron density (ρBCP) and the associated value of Laplacian (▽2ρBCP), as well as the potential energy density (HBCP) at the bond critical point in ILs-Tyr complexes."
ILs-Tyr | H-bond | ρBCP/(a.u.) | ▽2ρBCP/ (a.u.) | HBCP/(10-3 a.u.) |
[C4-3mim][BF4]-Ty | C2-H…OCOO | 0.011 | 0.035 | 1.300 |
NTyr-H…F1 | 0.011 | 0.045 | 1.462 | |
NTyr-H…F1 | N/A | N/A | N/A | |
NTyr-H…F2 | 0.022 | 0.093 | 2.007 | |
[C4-2mim][BF4]-Tyr | N3-H…OCOO | 0.050 | 0.141 | -7.241 |
NTyr-H…F1 | 0.027 | 0.115 | 1.922 | |
CBen-H…F2 | 0.006 | 0.022 | 0.867 | |
CBen-H…F3 | 0.008 | 0.030 | 0.995 | |
[C12-3mim][BF4]-Tyr | C2-H…Ocoo | 0.007 | 0.023 | 0.556 |
CAlkyl-H…OOH | 0.013 | 0.043 | 1.455 | |
NTyr-H…F2 | 0.022 | 0.091 | 2.022 | |
NTyr-H…F1 | N/A | N/A | N/A | |
NTyr-H…F1 | N/A | N/A | N/A | |
CBen-H…F1 | 0.007 | 0.028 | 1.015 | |
[C12-2mim][BF4]-Tyr | N3-H…OCOO | 0.047 | 0.137 | -5.678 |
NTyr-H…F1 | 0.024 | 0.100 | 1.959 | |
NTyr-H…F2 | N/A | N/A | N/A |
1 |
Dong K. ; Liu X. M. ; Dong H. F. ; Zhang X. P. ; Zhang S. J. Chem. Rev. 2017, 117, 6636.
doi: 10.1021/acs.chemrev.6b00776 |
2 |
Berthod A. ; Ruiz-Ángel M. J. ; Carda-Broch S. J. Chromatogr. A 2018, 1559, 2.
doi: 10.1016/j.chroma.2017.09.044 |
3 |
Rogers R. D. ; Seddon K. R. Science 2003, 302, 792.
doi: 10.1126/science.1090313 |
4 | Wei J. ; Dong H. X. ; Chen X. ; Yang Y. X. ; Fang D. W. ; Guan W. ; Yang J. Z. Acta Phys. -Chim. Sin. 2018, 34, 927. |
魏杰; 董贺新; 陈霞; 杨宇轩; 房大维; 关伟; 杨家振. 物理化学学报, 2018, 34, 927.
doi: 10.3866/PKU.WHXB201801112 |
|
5 | Caminiti, R.; Gontrani, L. The Structure of Ionic Liquids; Springer: Cham, Switzerland; 2013, pp. 127-148. |
6 | Zhang, S. J.; Wang, J. J.; Lu, X. M.; Zhou, Q. Structures and Interactions of Ionic Liquids; Springer: Berlin, Germany; 2013, pp. 1-38. |
7 |
Wang B. S. ; Qin L. ; Mu T. C. ; Xue Z. M. ; Gao G. H. Chem. Rev. 2017, 117, 7113.
doi: 10.1021/acs.chemrev.6b00594 |
8 |
Chen Y. ; Mu T. C. Green Energy Environ. 2019, 4, 95.
doi: 10.1016/j.gee.2019.01.012 |
9 |
Zhao Q. ; Chu H. W. ; Zhao B. F. ; Liang Z. ; Zhang L. H. ; Zhang Y. K. Trac-Trend. Anal. Chem. 2018, 108, 239.
doi: 10.1016/j.trac.2018.09.008 |
10 |
Kumar A. ; Venkatesu P. Biophys. Rev. 2018, 10, 841.
doi: 10.1007/s12551-018-0411-x |
11 |
Tome L. I. ; Jorge M. ; Gomes J. R. ; Coutinho J. A. J. Phys. Chem. B 2012, 116, 1831.
doi: 10.1021/jp209625e |
12 |
Yang H. P. ; Chen L. ; Zhou C. S. ; Yu X. J. ; Yagoub A. E. A. ; Ma H. L. Food Chem. 2018, 245, 346.
doi: 10.1016/j.foodchem.2017.10.110 |
13 |
Pei Y. C. ; Li L. ; Li Z. Y. ; Wu C. Z. ; Wang J. J. Sep. Sci. Technol. 2012, 47, 277.
doi: 10.1080/01496395.2011.609241 |
14 |
Fang F. ; Zhao Q. ; Li X. ; Liang Z. ; Zhang L. H. ; Zhang Y. Q. Anal. Chim. Acta 2016, 945, 39.
doi: 10.1016/j.aca.2016.09.032 |
15 |
Schröder C. Top. Curr. Chem. 2017, 375, 25.
doi: 10.1007/s41061-017-0110-2 |
16 |
Kumar A. ; Bisht M. ; Venkatesu P. Int. J. Biol. Macromol. 2017, 96, 611.
doi: 10.1016/j.ijbiomac.2016.12.005 |
17 |
Hunt P. A. Top. Curr. Chem. 2017, 375, 59.
doi: 10.1007/s41061-017-0142-7 |
18 |
Scheiner S. ; Kar T. ; Gu Y. J. Biol. Chem. 2001, 276, 9832.
doi: 10.1074/jbc.M010770200 |
19 |
Dong K. ; Zhang S. J. Chem. -Eur. J. 2012, 18, 2748.
doi: 10.1002/chem.201101645 |
20 |
Kim H. S. ; Ha S. H. ; Sethaphong L. ; Koo Y. M. ; Yingling Y. G. Phys. Chem. Chem. Phys. 2014, 16, 2944.
doi: 10.1039/C3CP52516C |
21 |
Yan H. ; Wu J. Y. ; Dai G. L. ; Zhong A. G. ; Chen H. ; Yang J. G. ; Han D. M. J. Lumin. 2012, 132, 622.
doi: 10.1016/j.jlumin.2011.10.026 |
22 |
Nandi S. ; Parui S. ; Halder R. ; Jana B. ; Bhattacharyya K. Biophys. Rev. 2018, 10, 757.
doi: 10.1007/s12551-017-0331-1 |
23 | Bai S. ; Chang Y. ; Liu X. J. ; Liu F. F. Acta Phys. -Chim. Sin. 2014, 30, 1239. |
白姝; 常颖; 刘小娟; 刘夫锋. 物理化学学报, 2014, 30, 1239.
doi: 10.3866/PKU.WHXB201405151 |
|
24 |
Kumar A. ; Bisht M. ; Venkatesu P. RSC Adv. 2016, 6, 18763.
doi: 10.1039/c5ra26690d |
25 |
Klähn M. ; Lim G. S. ; Seduraman A. ; Wu P. Phys. Chem. Chem. Phys. 2011, 13, 1649.
doi: 10.1039/c0cp01509a |
26 |
Mendonca C. M. N. ; Balogh D. T. ; Barbosa S. C. ; Sintra T. E. ; Ventura S. P. M. ; Martins L. F. G. ; Morgado P. ; Filipe E. J. M. ; Coutinho J. A. P. ; Oliveira O.N. ; et al Phys. Chem. Chem. Phys. 2018, 20, 29764.
doi: 10.1039/c8cp05035j |
27 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D. 01; Gaussian Inc.; Wallingford, CT, USA, 2013. |
28 |
Gill P. M. W. ; Johnson B. G. ; Pople J. A. ; Frisch M. Chem. Phys. Lett. 1992, 197, 499.
doi: 10.1016/0009-2614(92)85807-M |
29 |
Zhao Y. ; Truhlar D. G. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0310-x |
30 |
Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys. 2010, 132, 154104.
doi: 10.1063/1.3382344 |
31 |
Marenich A. V. ; Cramer C. J. ; Truhlar D. G. J. Phys. Chem. B 2009, 113, 6378.
doi: 10.1021/jp810292n |
32 |
Kessler J. ; Jakubek M. ; Dolenský B. ; Bouř P. J. Comput. Chem. 2012, 33, 2310.
doi: 10.1002/jcc.23063 |
33 |
Jeziorski B. ; Moszynski R. ; Szalewicz K. Chem. Rev. 1994, 94, 1887.
doi: 10.1021/cr00031a008 |
34 |
Parrish R. M. ; Burns L. A. ; Smith D. G. A. ; Simmonett A. C. ; DePrince A. E. ; Hohenstein E. G. ; Bozkaya U. ; Sokolov A. Y. ; Di Remigio R. ; Richard R.M. ; et al J. Chem. Theory Comput. 2017, 13, 3185.
doi: 10.1021/acs.jctc.7b00174 |
35 |
Saleh G. ; Gatti C. ; Presti L. Comput. Theor. Chem. 2012, 998, 148.
doi: 10.1016/j.comptc.2012.07.014 |
36 |
Johnson E. R. ; Keinan S. ; Mori-Sánchez P. ; Contreras-García J. ; Cohen A. J. ; Yang W. T. J. Am. Chem. Soc. 2010, 132, 6498.
doi: 10.1021/ja100936w |
37 |
Lu T. ; Chen F. W. J. Comput. Chem. 2012, 33, 580.
doi: 10.1002/jcc.22885 |
38 |
Heßelmann A. ; Jansen G. Phys. Chem. Chem. Phys. 2003, 5, 5010.
doi: 10.1039/B310529F |
39 |
Hohenstein E. G. ; Sherrill C. D. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 304.
doi: 10.1002/wcms.84 |
40 |
Emamian S. ; Lu T. ; Kruse H. ; Emamian H. J. Comput. Chem. 2019, 40, 2868.
doi: 10.1002/jcc.26068 |
41 |
Cremer D. ; Kraka E. Angew. Chem., Int. Ed. Engl. 1984, 23, 627.
doi: 10.1002/anie.198406271 |
42 |
Bader R. F. W. ; Beddall P. M. J. Chem. Phys. 1972, 56, 3320.
doi: 10.1063/1.1677699 |
43 |
Zhang Y. Q. ; He H. Y. ; Dong K. ; Fan M. H. ; Zhang S. J. RSC Adv. 2017, 7, 12670.
doi: 10.1039/c6ra27059j |
44 |
He H. Y. ; Zhang S. J. ; Liu X. M. ; Wang J. Q. ; Yao X. Q. ; Zhang X. P. Fluid Phase Equilib. 2013, 360, 169.
doi: 10.1016/j.fluid.2013.09.007 |
45 |
Rao S. S. ; Gejji S. P. J. Phys. Chem. A 2016, 120, 5665.
doi: 10.1021/acs.jpca.6b03985 |
46 |
Matthews R. P. ; Welton T. ; Hunt P. A. Phys. Chem. Chem. Phys. 2014, 16, 3238.
doi: 10.1039/c3cp54672a |
47 |
Ju Z. Y. ; Yao X. Q. ; Luo Z. F. ; Cao M. J. ; Xiao W. H. Carbohydr. Res. 2020, 487, 107882.
doi: 10.1016/j.carres.2019.107882 |
[1] | 王欢, 吴云雁, 赵燕飞, 刘志敏. 离子液体介导CO2化学转化研究进展[J]. 物理化学学报, 2021, 37(5): 2010022 - . |
[2] | 陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究[J]. 物理化学学报, 2021, 37(10): 2001004 - . |
[3] | 刘璐, 徐玉萍, 陈霞, 洪梅, 佟静. 1-烷基-3-甲基咪唑氯化物焓变的热重分析[J]. 物理化学学报, 2020, 36(11): 2004014 - . |
[4] | 惠淑荣, 赵丽薇, 刘青山, 宋大勇. [C3mim][NTf2]/DEC/[Li][NTf2]体系的基础性质[J]. 物理化学学报, 2020, 36(11): 1910067 - . |
[5] | 胡益民, 韩杰, 郭荣. 非离子表面活性剂Brij 30诱导离子液体型表面活性剂C16imC8Br蠕虫状胶束向凝胶的转变[J]. 物理化学学报, 2020, 36(10): 1909049 - . |
[6] | 杨康,帅骁睿,杨化超,严建华,岑可法. 基于室温离子液体的活化石墨烯粉末超级电容储能性能[J]. 物理化学学报, 2019, 35(7): 755 -765 . |
[7] | 潘明光,赵永升,曾小勤,邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应[J]. 物理化学学报, 2019, 35(6): 624 -629 . |
[8] | 龚燕燕,刘海春,张朵,佟静. 醚基功能化离子液体[MOEMIm]Cl和[EOEMIm]Cl热力学性质[J]. 物理化学学报, 2019, 35(11): 1224 -1231 . |
[9] | 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912 -919 . |
[10] | 胡之楠,左剑涛,夏美晨,房大维,臧树良. Pitzer方程应用于离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)溶解焓研究[J]. 物理化学学报, 2018, 34(8): 933 -937 . |
[11] | 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938 -944 . |
[12] | 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952 -958 . |
[13] | 佟静,屈晔,井立强,刘璐,刘春辉. 用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓[J]. 物理化学学报, 2018, 34(2): 194 -200 . |
[14] | 相欣然,万晓梅,索红波,胡燚. 功能化离子液体修饰多壁碳纳米管固定化Candida antarctic lipase B[J]. 物理化学学报, 2018, 34(1): 99 -107 . |
[15] | 蒙延双,王琛,王磊,王功瑞,夏军,朱福良,ZHANG Yue. 微波辅助裂解离子液体制备硫氮共掺杂多孔碳材料[J]. 物理化学学报, 2017, 33(9): 1915 -1922 . |
|