物理化学学报 >> 2020, Vol. 36 >> Issue (11): 1910067.doi: 10.3866/PKU.WHXB201910067
惠淑荣1, 赵丽薇1, 刘青山2,*(), 宋大勇2,*()
收稿日期:
2019-10-03
录用日期:
2019-11-25
发布日期:
2019-11-29
通讯作者:
刘青山,宋大勇
E-mail:02726@zjhu.edu.cn;chsdyq@163.com
基金资助:
Shurong Hui1, Liwei Zhao1, Qingshan Liu2,*(), Dayong Song2,*()
Received:
2019-10-03
Accepted:
2019-11-25
Published:
2019-11-29
Contact:
Qingshan Liu,Dayong Song
E-mail:02726@zjhu.edu.cn;chsdyq@163.com
Supported by:
摘要:
本文通过传统方法合成了1-丙基-3-甲基咪唑双三氟甲基磺酸亚胺疏水型离子液体,在离子液体中加入碳酸二乙酯和双三氟甲基磺酸亚胺锂盐制备了八个体系。通过差式扫描量热仪考察了上述体系的热力学性质。考察了体系的半稳定态温度随着锂盐的加入后的变化情况,以及玻璃化温度随离子液体与碳酸二乙酯的比例的变化情况。测量结果并没有观测到体系的熔点温度,表明碳酸二乙酯和锂盐能够在较低的温度下溶解在离子液体中。系统研究了不同温度下八个体系的基础性质,如:锂离子([Li]+)自扩散系数随碳酸二乙酯浓度的变化规律,密度、粘度和电导率随温度的变化规律,利用Vogel Fulcher Tamman (VFT),Final Vogel Fulcher Tamman (FVFT)和Arrhenius方程计算得到八个体系的粘度活化能、电导活化能等。在性质实验的基础上,通过分子动力学模拟讨论了[Li]+与[NTf2]-/碳酸二乙酯之间的相互作用情况,及碳酸二乙酯的引入对LiNTf2/离子液体体系的微观结构影响,其中阴离子[NTf2]-通过氧原子与锂离子之间发生相互作用。通过径向分布函数和对[Li]+周围O原子的配位数的分析表明,碳酸二乙酯的引入,削弱了[Li]+与[NTf2]-之间的相互作用。因此,碳酸二乙酯的引入有利于[Li]+的扩散,该结论与实验结果相符。
惠淑荣, 赵丽薇, 刘青山, 宋大勇. [C3mim][NTf2]/DEC/[Li][NTf2]体系的基础性质[J]. 物理化学学报, 2020, 36(11), 1910067. doi: 10.3866/PKU.WHXB201910067
Shurong Hui, Liwei Zhao, Qingshan Liu, Dayong Song. Basic Properties of [C3mim][NTf2]/DEC/[Li][NTf2] Systems[J]. Acta Physico-Chimica Sinica 2020, 36(11), 1910067. doi: 10.3866/PKU.WHXB201910067
Table 1
The purity (by mass), molecular weight (MW), and company name (Source) of the materials and products ILs [C3MIM][NTf2]."
Name | Purity (by mass) | MW | Source | Tm/K |
[C3mim][Cl] | ≥0.99% | 160.64 | Lanzhou Institute of Chemical Physics, Lanzhou, China | ≈ 333 |
[Li][NTf2] | ≥0.99% | 287.09 | Solvay Chemicals Co., LTD, Zhenjiang, China | ≈ 407 |
[C3mim][NTf2] | ≥0.99% | 405.33 | Synthesized | – |
DEC | ≥0.99% | 118.13 | Aladdin Industrial Inc. Shanghai, China | ≈ 230 |
Table 2
The glass temperature, T/K, and lithium ion self-diffusion coefficient, D[Li]+ of the eight systems at 298 K."
Ratio | Tg/K | Tsemi/K | η/(mPa·s) | σ/(mS·cm-1) | 10 | |
1 | 0.9769 mol·kg-1 [Li][NTf2]/(V(C3mimNTf2) : V(DEC) = 6 : 6) | 171.25 | – | 18.21 | 4.32 | 3.928 |
2 | V(C3mimNTf2) : V(DEC) = 6 : 6 | 151.69 | 223.43 | 5.194 | 10.00 | – |
3 | 1.1630 mol·kg-1 [Li][NTf2]/(V(C3mimNTf2) : V(DEC) = 6 : 4) | 179.57 | – | 38.93 | 2.91 | 1.927 |
4 | V(C3mimNTf2) : V(DEC) = 6 : 4 | 158.00 | 213.27 | 7.320 | 10.04 | – |
5 | 1.0408 mol·kg-1 [Li][NTf2]/(V(C3mimNTf2) : V(DEC) = 6 : 3) | 180.27 | – | 45.43 | 2.87 | 1.176 |
6 | V(C3mimNTf2) : V(DEC) = 6 : 3 | 160.98 | 211.35 | 9.647 | 9.59 | – |
7 | 1.0075 mol·kg-1 [Li][NTf2]/(V(C3mimNTf2) : V(DEC) = 6 : 0) | 196.51 | – | 244.1 | 1.333 | – |
8 | V(C3mimNTf2) : V(DEC) = 6 : 0 | 175.59 | – | 44.31 | 5.42 | – |
Table 3
Experimental density (ρ) for the eight systems from 288.15 to 348.15 K at atmosphere pressure (p = 101.3 kPa)."
T/K | ρ/(g·cm–3) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
288.15 | 1.354014 | 1.245133 | 1.414378 | 1.287756 | 1.431885 | 1.320589 | 1.570253 | 1.484694 |
293.15 | 1.348608 | 1.239945 | 1.408932 | 1.282615 | 1.426470 | 1.315487 | 1.564899 | 1.479711 |
298.15 | 1.343203 | 1.234745 | 1.403495 | 1.277471 | 1.421075 | 1.310380 | 1.559525 | 1.474744 |
303.15 | 1.337790 | 1.229540 | 1.398082 | 1.272326 | 1.415697 | 1.305280 | 1.554157 | 1.469791 |
308.15 | 1.332376 | 1.224339 | 1.392673 | 1.267186 | 1.410333 | 1.300185 | 1.548802 | 1.464858 |
313.15 | 1.326968 | 1.219138 | 1.387274 | 1.26205 | 1.404975 | 1.295100 | 1.543474 | 1.459950 |
318.15 | 1.321566 | 1.213941 | 1.381881 | 1.256919 | 1.399622 | 1.290019 | 1.538174 | 1.455062 |
323.15 | 1.316167 | 1.208734 | 1.376498 | 1.251789 | 1.39429 | 1.284941 | 1.532900 | 1.450186 |
328.15 | 1.310775 | 1.203532 | 1.371121 | 1.246663 | 1.388963 | 1.279872 | 1.527654 | 1.445328 |
333.15 | 1.305379 | 1.198331 | 1.365749 | 1.241541 | 1.383643 | 1.27481 | 1.522432 | 1.440490 |
338.15 | 1.299981 | 1.193134 | 1.360383 | 1.236419 | 1.378333 | 1.269746 | 1.517233 | 1.435661 |
343.15 | 1.294590 | 1.187930 | 1.355025 | 1.231294 | 1.373028 | 1.264689 | 1.512054 | 1.430847 |
348.15 | 1.289199 | 1.182717 | 1.349668 | 1.226177 | 1.367733 | 1.259638 | 1.506902 | 1.426042 |
Table 4
Experimental values of dynamic viscosity (η) of the eight systems from 288.15 to 348.15 K at atmosphere pressure (p = 101.3 kPa)."
T/K | η/(mPa·s) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
288.15 | 26.40 | 6.71 | 61.16 | 9.728 | 72.66 | 13.25 | 478.5 | 69.68 |
293.15 | 21.79 | 5.886 | 48.3 | 8.398 | 56.83 | 11.28 | 336.8 | 55.06 |
298.15 | 18.21 | 5.194 | 38.93 | 7.320 | 45.43 | 9.647 | 244.1 | 44.31 |
303.15 | 15.40 | 4.625 | 31.85 | 6.430 | 36.86 | 8.390 | 181.5 | 36.25 |
308.15 | 13.17 | 4.138 | 26.43 | 5.704 | 30.38 | 7.365 | 138.0 | 30.11 |
313.15 | 11.36 | 3.732 | 22.21 | 5.092 | 25.38 | 6.515 | 107.1 | 25.32 |
318.15 | 9.886 | 3.384 | 18.98 | 4.574 | 21.45 | 5.805 | 84.70 | 21.54 |
323.15 | 8.680 | 3.084 | 16.72 | 4.125 | 18.5 | 5.208 | 68.04 | 18.54 |
328.15 | 7.668 | 2.824 | 14.54 | 3.749 | 16.29 | 4.700 | 55.44 | 16.26 |
333.15 | 6.825 | 2.595 | 12.58 | 3.422 | 14.23 | 4.264 | 45.71 | 14.39 |
338.15 | 6.114 | 2.394 | 10.96 | 3.138 | 12.41 | 3.881 | 38.18 | 12.78 |
343.15 | 5.506 | 2.217 | 9.54 | 2.889 | 10.82 | 3.556 | 32.29 | 11.35 |
348.15 | 4.983 | 2.061 | 8.407 | 2.67 | 9.489 | 3.27 | 27.59 | 10.12 |
Table 5
Experimental values of electrical conductivity (σ) of the eight systems from 288.15 to 348.15 K at atmosphere pressure (p = 101.3 kPa)."
T/K | σ/(mS·cm–1) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
288.15 | 3.20 | 7.92 | 1.953 | 7.78 | 1.887 | 7.29 | 0.740 | 3.59 |
293.15 | 3.71 | 8.91 | 2.43 | 8.87 | 2.36 | 8.40 | 0.986 | 4.41 |
298.15 | 4.32 | 10.00 | 2.91 | 10.04 | 2.87 | 9.59 | 1.333 | 5.42 |
303.15 | 4.99 | 11.09 | 3.50 | 11.18 | 3.49 | 10.86 | 1.776 | 6.45 |
308.15 | 5.73 | 12.21 | 4.12 | 12.44 | 4.13 | 12.17 | 2.27 | 7.65 |
313.15 | 6.48 | 13.36 | 4.85 | 13.81 | 4.82 | 13.56 | 2.84 | 8.99 |
318.15 | 7.28 | 14.56 | 5.56 | 15.19 | 5.56 | 15.00 | 3.43 | 10.44 |
323.15 | 8.12 | 15.79 | 6.28 | 16.64 | 6.47 | 16.52 | 4.16 | 11.90 |
328.15 | 8.98 | 17.07 | 7.18 | 18.17 | 7.36 | 18.12 | 4.98 | 13.51 |
333.15 | 9.92 | 18.40 | 8.05 | 19.68 | 8.34 | 19.72 | 5.93 | 15.33 |
338.15 | 10.93 | 19.76 | 9.05 | 21.3 | 9.31 | 21.3 | 6.92 | 17.07 |
343.15 | 11.90 | 21.2 | 9.99 | 22.9 | 10.37 | 23.1 | 8.01 | 19.07 |
348.15 | 12.96 | 22.6 | 10.99 | 24.5 | 11.54 | 24.9 | 9.23 | 21.2 |
Table 6
The comparison of density (ρ), viscosity (η), and conductivity (σ) of IL [C3mim][NTf2] with the literature values at T = 293.15 to 343.15 K at atmosphere pressure (p = 101.3 kPa)."
T/K | ρ/(g·cm-3) | |||||
Exp. | Lit. | |||||
293.15 | 1.479711 | 1.47939 | ||||
298.15 | 1.474744 | 1.47444 | ||||
303.15 | 1.469791 | 1.46950 | ||||
308.15 | 1.464858 | 1.46458 | ||||
313.15 | 1.459950 | 1.45967 | ||||
318.15 | 1.455062 | 1.45478 | ||||
323.15 | 1.450186 | 1.44991 | ||||
328.15 | 1.445328 | 1.44506 | ||||
333.15 | 1.440490 | 1.44023 | ||||
338.15 | 1.435661 | 1.43542 | ||||
343.15 | 1.430847 | 1.43062 | ||||
T/K | η/(mPa·s) | σ/(mS·cm-1) | ||||
Exp. | Lit. | Exp. | Lit. | |||
293.15 | 55.06 | 54.19 | 4.41 | 3.55 | ||
298.15 | 44.31 | 43.7 | 5.42 | 4.35 | ||
303.15 | 36.25 | 35.68 | 6.45 | 5.21 | ||
308.15 | 30.11 | 29.51 | 7.65 | 6.11 | ||
313.15 | 25.32 | 24.77 | 8.99 | 7.10 | ||
318.15 | 21.54 | 21.01 | 10.44 | 8.13 | ||
323.15 | 18.54 | 18.04 | 11.90 | 9.23 | ||
328.15 | 16.26 | 15.59 | ||||
333.15 | 14.39 | 13.63 | ||||
338.15 | 12.78 | 12.02 | ||||
343.15 | 11.35 | 10.66 |
Table 7
The fitting parameters values vs temperature for the eight systems by line equation, VFT and modified VFT equations."
Property | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
ρ/(g·cm-3) | ||||||||
A | 1.66529 | 1.54490 | 1.72495 | 1.58346 | 1.73976 | 1.61325 | 1.87451 | 1.76609 |
104B | -10.80 | -10.40 | -10.80 | -10.30 | -10.70 | -10.20 | -10.60 | -9.77 |
R | 0.99999 | 0.99999 | 0.99999 | 0.99999 | 0.99999 | 0.99999 | 0.99994 | 0.99996 |
VFT equation | ||||||||
η/(mPa·s) | ||||||||
η0/(mPa·s) | 0.1056 | 0.0959 | 0.1839 | 0.1133 | 0.2258 | 0.1516 | 0.1437 | 0.2973 |
B/K | 765.9 | 663.0 | 691.7 | 653.5 | 650.7 | 591.0 | 896.0 | 600.2 |
103Eη/eV | 66.1 | 57.2 | 59.7 | 56.4 | 56.1 | 51.0 | 77.3 | 51.8 |
T0/K | 149.4 | 132.1 | 169.0 | 141.4 | 175.5 | 156.0 | 177.7 | 178.2 |
R | 0.99999 | 0.99999 | 0.99982 | 0.99999 | 0.99993 | 0.99998 | 0.99999 | 0.99998 |
σ/(mS·cm-1) | ||||||||
σ0/(mS·cm-1) | 332.51 | 362.11 | 304.76 | 433.42 | 405.52 | 440.76 | 827.03 | 791.37 |
B/K | 643.9 | 609.5 | 582.6 | 602.7 | 635.2 | 577.6 | 751.5 | 661.6 |
103Eσ/eV | 55.6 | 52.6 | 50.3 | 52.0 | 54.8 | 49.8 | 64.8 | 57.1 |
T0/K | 149.7 | 128.5 | 172.7 | 138.3 | 169.8 | 147.3 | 181.0 | 165.5 |
R | 0.99996 | 0.99995 | 0.99980 | 0.99997 | 0.99994 | 0.99997 | 0.99993 | 0.99994 |
Table 8
The thermal expansion coefficient, 104α/K-1, of the eight systems from 288.15 to 348.15 K at atmosphere pressure (p = 101.3 kPa)."
T/K | 104α/K-1 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
288.15 | 7.98 | 8.35 | 7.64 | 8.00 | 7.47 | 7.72 | 6.75 | 6.58 |
293.15 | 8.01 | 8.39 | 7.67 | 8.03 | 7.50 | 7.75 | 6.77 | 6.60 |
298.15 | 8.04 | 8.42 | 7.70 | 8.06 | 7.53 | 7.78 | 6.80 | 6.63 |
303.15 | 8.07 | 8.46 | 7.72 | 8.10 | 7.56 | 7.81 | 6.82 | 6.65 |
308.15 | 8.11 | 8.49 | 7.75 | 8.13 | 7.59 | 7.85 | 6.84 | 6.67 |
313.15 | 8.14 | 8.53 | 7.79 | 8.16 | 7.62 | 7.88 | 6.87 | 6.69 |
318.15 | 8.17 | 8.57 | 7.82 | 8.19 | 7.64 | 7.91 | 6.89 | 6.72 |
323.15 | 8.21 | 8.60 | 7.85 | 8.23 | 7.67 | 7.94 | 6.91 | 6.74 |
328.15 | 8.24 | 8.64 | 7.88 | 8.26 | 7.70 | 7.97 | 6.94 | 6.76 |
333.15 | 8.27 | 8.68 | 7.91 | 8.30 | 7.73 | 8.00 | 6.96 | 6.78 |
338.15 | 8.31 | 8.72 | 7.94 | 8.33 | 7.76 | 8.03 | 6.99 | 6.81 |
343.15 | 8.34 | 8.75 | 7.97 | 8.37 | 7.79 | 8.07 | 7.01 | 6.83 |
348.15 | 8.38 | 8.79 | 8.00 | 8.40 | 7.82 | 8.10 | 7.03 | 6.85 |
Table 9
The values of 1000T–1 and lnη/(mPa·s) of the eight systems from 288.15 to 348.15 K."
1000T–1/K–1 | lnη/(mPa·s) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3.4704 | 3.2735 | 1.9036 | 4.1135 | 2.2750 | 4.2858 | 2.5840 | 6.1707 | 4.2439 |
3.4112 | 3.0813 | 1.7726 | 3.8774 | 2.1280 | 4.0401 | 2.4230 | 5.8195 | 4.0084 |
3.354 | 2.9021 | 1.6475 | 3.6618 | 1.9906 | 3.8162 | 2.2666 | 5.4975 | 3.7912 |
3.2987 | 2.7344 | 1.5315 | 3.4610 | 1.8610 | 3.6071 | 2.1270 | 5.2013 | 3.5904 |
3.2452 | 2.5779 | 1.4202 | 3.2745 | 1.7412 | 3.4138 | 1.9967 | 4.9273 | 3.4049 |
3.1934 | 2.4301 | 1.3169 | 3.1005 | 1.6277 | 3.2340 | 1.8741 | 4.6738 | 3.2316 |
3.1432 | 2.2911 | 1.2191 | 2.9434 | 1.5204 | 3.0657 | 1.7587 | 4.4391 | 3.0699 |
3.0945 | 2.1610 | 1.1262 | 2.8166 | 1.4171 | 2.9178 | 1.6502 | 4.2201 | 2.9199 |
3.0474 | 2.0371 | 1.0382 | 2.6769 | 1.3215 | 2.7906 | 1.5476 | 4.0153 | 2.7887 |
3.0016 | 1.9206 | 0.9536 | 2.5321 | 1.2302 | 2.6554 | 1.4502 | 3.8223 | 2.6665 |
2.9573 | 1.8106 | 0.8730 | 2.3943 | 1.1436 | 2.5185 | 1.3561 | 3.6423 | 2.5479 |
2.9142 | 1.7058 | 0.7962 | 2.2555 | 1.0609 | 2.3814 | 1.2686 | 3.4748 | 2.4292 |
2.8723 | 1.6060 | 0.7232 | 2.1291 | 0.9821 | 2.2501 | 1.1848 | 3.3175 | 2.3145 |
Table 10
The values of 1000T–1 and lnσ/(mS·cm–1) of the eight systems from 288.15 to 348.15 K."
1000T–1/K–1 | lnσ/(mS·cm–1) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3.4704 | 1.1632 | 2.0694 | 0.6694 | 2.0516 | 0.6350 | 1.9865 | -0.3011 | 1.2782 |
3.4112 | 1.3110 | 2.1872 | 0.8879 | 2.1827 | 0.8587 | 2.1282 | -0.0141 | 1.4839 |
3.3540 | 1.4633 | 2.3026 | 1.0682 | 2.3066 | 1.0543 | 2.2607 | 0.2874 | 1.6901 |
3.2987 | 1.6074 | 2.4060 | 1.2528 | 2.4141 | 1.2499 | 2.3851 | 0.5744 | 1.8641 |
3.2452 | 1.7457 | 2.5023 | 1.4159 | 2.5209 | 1.4183 | 2.4990 | 0.8198 | 2.0347 |
3.1934 | 1.8687 | 2.5923 | 1.5790 | 2.6254 | 1.5728 | 2.6071 | 1.0438 | 2.1961 |
3.1432 | 1.9851 | 2.6783 | 1.7156 | 2.7206 | 1.7156 | 2.7081 | 1.2326 | 2.3456 |
3.0945 | 2.0943 | 2.7594 | 1.8374 | 2.8118 | 1.8672 | 2.8046 | 1.4255 | 2.4765 |
3.0474 | 2.1950 | 2.8373 | 1.9713 | 2.8998 | 1.9961 | 2.8970 | 1.6054 | 2.6034 |
3.0016 | 2.2946 | 2.9124 | 2.0857 | 2.9796 | 2.1211 | 2.9816 | 1.7800 | 2.7298 |
2.9573 | 2.3915 | 2.9837 | 2.2028 | 3.0587 | 2.2311 | 3.0587 | 1.9344 | 2.8373 |
2.9142 | 2.4765 | 3.0540 | 2.3016 | 3.1311 | 2.3389 | 3.1398 | 2.0807 | 2.9481 |
2.8723 | 2.5619 | 3.1179 | 2.3970 | 3.1987 | 2.4458 | 3.2149 | 2.2225 | 3.0540 |
1 |
Welton T Chem. Rev. 1999, 99, 2071.
doi: 10.1021/cr980032t |
2 |
Rantwijk F. V. ; Sheldon R. A Chem. Rev. 2007, 107, 2757.
doi: 10.1021/cr050946x |
3 |
Greaves T. L. ; Drummond C. J Chem. Rev. 2008, 108, 206.
doi: 10.1021/cr068040u |
4 | Gong Y. ; Liu C. ; Zhang D. ; Tong J Acta Phys. -Chim. Sin. 2019, 35 (11), 1224. |
龚燕燕; 刘海春; 张朵; 佟静. 物理化学学报, 2019, 35 (11), 1224.
doi: 10.3866/PKU.WHXB201901072 |
|
5 | Hu Z. N. ; Zuo J. T. ; Xia M. C. ; Fang D. W. ; Zang S. L Acta Phys. -Chim. Sin. 2018, 34 (8), 933. |
胡之楠; 左剑涛; 夏美晨; 房大维; 臧树良. 物理化学学报, 2018, 34 (8), 933.
doi: 10.3866/PKU.WHXB201801221 |
|
6 |
Dagade D. ; Pawar R. ; Patil K J. Chem. Eng. Data 2004, 49, 341.
doi: 10.1021/je034188o |
7 |
Chorążewski M. ; Dzida M. ; Zorębski E. ; Zorębski M J. Chem. Thermodyn. 2013, 58, 389.
doi: 10.1016/j.jct.2012.09.027 |
8 |
Comesaña J. F. ; Otero J. J. ; García E. ; Correa A J. Chem. Eng. Data 2003, 48, 362.
doi: 10.1021/je020153x |
9 |
Corderí S. ; González B. ; Calvar N. ; Gómez E Fluid Phase Equilib. 2013, 337, 11.
doi: 10.1016/j.fluid.2012.10.004 |
10 |
Seoane R. G. ; González E. J. ; González B J. Chem. Thermodyn. 2012, 53, 152.
doi: 10.1016/j.jct.2012.04.026 |
11 |
Murulana L. C. ; Singh A. K. ; Shukla S. K. ; Kabanda M. M. ; Ebenso E. E Ind. Eng. Chem. Res. 2012, 51, 13282.
doi: 10.1021/ie300977d |
12 |
Domínguez I. ; González E. J. ; González R. ; DomínguezÁ Sep. Sci. Technol. 2012, 47, 331.
doi: 10.1080/01496395.2011.621161 |
13 |
Tariq M. ; Serro A. P. ; Mata J. L. ; Saramago B. ; Esperança J. M. S. S. ; Lopes J. N. C. ; Rebelo L. P. N Fluid Phase Equilib. 2010, 294, 131.
doi: 10.1016/j.fluid.2010.02.020 |
14 |
Gómez E. ; Calvar N. ; Macedo E. A. ; DomínguezÁ J. Chem. Thermodyn. 2012, 45, 9.
doi: 10.1016/j.jct.2011.08.028 |
15 |
Papović S. ; Vraneš M. ; Gadžurić S J. Chem. Thermodyn. 2015, 91, 360.
doi: 10.1016/j.jct.2015.07.048 |
16 |
Esperança J. M. S. S. ; Visak Z. P. ; Plechkova N. V. ; Seddon K. R. ; Guedes H. J. R. ; Rebelo L P.N. J. Chem. Eng. Data 2006, 51, 2009.
doi: 10.1021/je060203o |
17 |
Shukla K. ; Srivastava V. C RSC Adv. 2016, 39, 32624.
doi: 10.1039/C6RA02518H |
18 |
Tobiszewski M. ; Zabrocka W. ; Bystrzanowska M Anal. Methods 2019, 11, 844.
doi: 10.1039/C8AY02683A |
19 |
Tong J. ; Xiao X. ; Liang X. ; Solms N. ; Huo F. ; He H. ; Zhang S Phys. Chem. Chem. Phys. 2019, 21, 19216.
doi: 10.1039/C9CP01848D |
20 |
Pingali S. R. K. ; Upadhyay S. K. ; Jursic B. S Green Chem. 2011, 13, 928.
doi: 10.1039/C0GC00794C |
21 |
Hassoun J. ; Fernicola A. ; Navarra M. A. ; Panero S. ; Scrosati B J. Power Sources 2010, 195, 574.
doi: 10.1016/j.jpowsour.2009.07.046 |
22 |
Reale P. ; Fernicola A. ; Scrosati B J. Power Sources 2009, 194, 182.
doi: 10.1016/j.jpowsour.2009.05.016 |
23 |
Liu Q. S. ; Zhao L. W. ; Zheng Q. G. ; Mou L. ; Zhang P. F J. Chem. Eng. Data 2018, 63, 4484.
doi: 10.1021/acs.jced.8b00591 |
24 |
Mou L. ; Chai Y. Y. ; Yang G. Z. ; Xia Q. ; Liu Q. S. ; Zheng Q. G. ; Zhang Q. G J. Chem. Thermodyn. 2019, 130, 183.
doi: 10.1016/j.jct.2018.10.015 |
25 | Zheng Q. G. ; Liu H. ; Xia Q. ; Liu Q. S. ; Mou L Acta Phys. -Chim. Sin. 2017, 33 (4), 736. |
郑其格; 刘惠; 夏泉; 刘青山; 牟林. 物理化学学报, 2017, 33 (4), 736.
doi: 10.3866/PKU.WHXB201612293 |
|
26 | Liu Q. S. ; Liu H. ; Mou L Acta Phys. -Chim. Sin. 2016, 32 (3), 617. |
刘青山; 刘惠; 牟林. 物理化学学报, 2016, 32 (3), 617.
doi: 10.3866/PKU.WHXB201512171 |
|
27 |
Wu D. ; Chen A. ; Johnson C. S ; Jr J. Magn. Reson. Series A 1995, 115, 260.
doi: 10.1006/jmra.1995.1176 |
28 |
Chirico R. D. ; Frenkel M. ; Magee J. W. ; Diky V. ; Muzny C. D. ; Kazakov A. F J. Chem. Eng. Data 2013, 58, 2699.
doi: 10.1021/je400569s |
29 |
Abraham M. J. ; Murtola T. ; Schulz R. ; Páll S. ; Smith J. C. ; Hess B. ; Lindahl E SoftwareX 2015, 1-2, 19.
doi: 10.1016/j.softx.2015.06.001 |
30 |
Jorgensen W. L. ; Tirado-Rives J J. Am. Chem. Soc. 1988, 110, 1657.
doi: 10.1021/ja00214a001 |
31 |
Martínez L. ; Andrade R. ; Birgin E. G. ; Martínez J. M J. Comput. Chem. 2009, 30, 2157.
doi: 10.1002/jcc.21224 |
32 |
Liu Q. S. ; Li P. P. ; Welz-Biermann U. ; Chen J. ; Liu X. X J. Chem. Thermodyn. 2013, 66, 88.
doi: 10.1016/j.jct.2013.06.008 |
33 |
Liu Q. S. ; Liu J. ; Liu X. X. ; Zhang S. T J. Chem. Thermodyn 2015, 90, 39.
doi: 10.1016/j.jct.2015.06.010 |
34 |
Liu Q. S. ; Li P. P. ; Welz-Biermann U. ; Liu X. X. ; Chen J J. Chem. Eng. Data 2012, 57, 2999.
doi: 10.1021/je3004645 |
35 |
Vila J. ; Ginés P. ; Pico J. M. ; Franjo C. ; Jiménez E. ; Varela L. M. ; Cabeza O Fluid Phase Equilib. 2006, 242, 141.
doi: 10.1016/j.uid.2006.01.022 |
[1] | 王欢, 吴云雁, 赵燕飞, 刘志敏. 离子液体介导CO2化学转化研究进展[J]. 物理化学学报, 2021, 37(5): 2010022 - . |
[2] | 陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究[J]. 物理化学学报, 2021, 37(10): 2001004 - . |
[3] | 吴智伟, 丁伟璐, 张雅琴, 王艳磊, 何宏艳. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2021, 37(10): 2002021 - . |
[4] | 刘璐, 徐玉萍, 陈霞, 洪梅, 佟静. 1-烷基-3-甲基咪唑氯化物焓变的热重分析[J]. 物理化学学报, 2020, 36(11): 2004014 - . |
[5] | 胡益民, 韩杰, 郭荣. 非离子表面活性剂Brij 30诱导离子液体型表面活性剂C16imC8Br蠕虫状胶束向凝胶的转变[J]. 物理化学学报, 2020, 36(10): 1909049 - . |
[6] | 杨康,帅骁睿,杨化超,严建华,岑可法. 基于室温离子液体的活化石墨烯粉末超级电容储能性能[J]. 物理化学学报, 2019, 35(7): 755 -765 . |
[7] | 潘明光,赵永升,曾小勤,邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应[J]. 物理化学学报, 2019, 35(6): 624 -629 . |
[8] | 龚燕燕,刘海春,张朵,佟静. 醚基功能化离子液体[MOEMIm]Cl和[EOEMIm]Cl热力学性质[J]. 物理化学学报, 2019, 35(11): 1224 -1231 . |
[9] | 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912 -919 . |
[10] | 胡之楠,左剑涛,夏美晨,房大维,臧树良. Pitzer方程应用于离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)溶解焓研究[J]. 物理化学学报, 2018, 34(8): 933 -937 . |
[11] | 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938 -944 . |
[12] | 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952 -958 . |
[13] | 佟静,屈晔,井立强,刘璐,刘春辉. 用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓[J]. 物理化学学报, 2018, 34(2): 194 -200 . |
[14] | 相欣然,万晓梅,索红波,胡燚. 功能化离子液体修饰多壁碳纳米管固定化Candida antarctic lipase B[J]. 物理化学学报, 2018, 34(1): 99 -107 . |
[15] | 蒙延双,王琛,王磊,王功瑞,夏军,朱福良,ZHANG Yue. 微波辅助裂解离子液体制备硫氮共掺杂多孔碳材料[J]. 物理化学学报, 2017, 33(9): 1915 -1922 . |
|