物理化学学报 >> 2021, Vol. 37 >> Issue (10): 2001004.doi: 10.3866/PKU.WHXB202001004
陈文琼1, 关永吉1, 张姣1, 裴俊捷1, 张晓萍1,*(), 邓友全2,*()
收稿日期:
2020-01-02
录用日期:
2020-03-19
发布日期:
2020-03-23
通讯作者:
张晓萍,邓友全
E-mail:zxp@lzu.edu.cn;ydeng@licp.cas.cn
基金资助:
Wenqiong Chen1, Yongji Guan1, Jiao Zhang1, Junjie Pei1, Xiaoping Zhang1,*(), Youquan Deng2,*()
Received:
2020-01-02
Accepted:
2020-03-19
Published:
2020-03-23
Contact:
Xiaoping Zhang,Youquan Deng
E-mail:zxp@lzu.edu.cn;ydeng@licp.cas.cn
About author:
Email: ydeng@licp.cas.cn; Tel.: +86-931-4968116 (Y.D.)Supported by:
摘要:
振动光谱学是研究液体分子微观结构的强有力工具,利用振动光谱学探究外界条件作用下液体结构性质的变化是可行的。本文利用分子动力学模拟方法研究了从0到10 V·nm-1变化的外加电场对1-乙基-3-甲基咪唑六氟磷酸盐离子液体的振动光谱的影响,并且详细分析了位于50,183,3196,3396 cm-1的振动峰的强度及位置随外加电场变化而变化的内在原因。随着外加电场从0增大到10 V·nm-1,由于模拟体系中平均每对阴阳离子的总偶极矩增大(从4.34到5.46 Debye)和阳离子的取向更加一致,使得位于50、183 cm-1的振动峰的强度相应地逐渐增强。位于3196 cm-1的振动峰的强度明显减弱,因为外加电场的作用使甲基和乙基侧链上碳原子周围的氢原子不断增多,从而使烷基链上碳氢键的伸缩振动受限。外加电场作用下分子间+C-H···F-氢键的减少使位于3396 cm-1的振动峰的强度逐渐减弱。而位于50和3396 cm-1的振动峰的红移现象分别归因于每对离子平均相互作用能的减小(从-378.7到-298.0 kJ·mol-1)和有利于氢键结合的弛豫效应。
陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究[J]. 物理化学学报, 2021, 37(10), 2001004. doi: 10.3866/PKU.WHXB202001004
Wenqiong Chen, Yongji Guan, Jiao Zhang, Junjie Pei, Xiaoping Zhang, Youquan Deng. Atomistic Insight into Changes in the Vibrational Spectrum of Ionic Liquids under External Electric Field[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 2001004. doi: 10.3866/PKU.WHXB202001004
Fig 5
Average interaction energy for per ion of [Emim][PF6] IL with the varied EEFs in the range of 0 to 10 V·nm-1 for (a) average Coulombic energy (Ecoul) and vdw energy (Evdw) and (b) total binding energy (Ebin = Ecoul + Evdw) for per [Emim][PF6] ion. The arrows are drawn only for indicating the direction of energy increase."
Fig 6
Average values of P2cos(θ) for the orientation angles between the selected vector (starting with N atom on cationic imidazole ring and ending with thermal carbon atom on ethyl side chain) and the y axis direction vector which is in line with the EEF direction in the system with varied EEFs ranging from 0 to 10 V·nm-1, which are displayed by a three-dimensional graph and the colored shadows are the area between the curves and the baseline (P2cos(θ) = 0)."
Fig 7
RDFs between carbon atoms and hydrogen atoms on the methyl and ethyl side chains with varied EEFs in the range from 0 to 10 V·nm-1 for (a) RDF of C-H bonds on methyl side chain, (b) RDF of C-H bonds for methylene group on ethyl side chain and (c) RDF of C-H bonds for methyl group on ethyl side chain, where the inset shows the local enlarged view."
Fig 8
The coordination numbers (CNs) between carbon atoms and hydrogen atoms on the methyl and ethyl side chains with varied EEFs in the range from 0 to 10 V·nm-1 for (a) CN of C-H on methyl side chain, (b) CN of C-H for methylene group on ethyl side chain and (c) CN of C-H for methyl group on ethyl side chain. The short dotted lines represent the CN values at the C-H bond lengths under different EEFs."
Fig 10
RDFs between hydrogen atoms on the cationic imidazole rings and fluorine atoms in [PF6]- anions with varied EEFs in the range of 0 to 10 V·nm-1 from (a) H2 atoms and fluorine atoms, (b) H4 atoms and fluorine atoms and (c) H5 atoms and fluorine atoms, respectively, where the inset shows the local enlarged view and the dashed lines represent the left shift of the RDFs' first peaks."
1 |
Hallett J. P. ; Welton T. Chem. Rev. 2011, 111, 3508.
doi: 10.1021/cr1003248 |
2 |
Chiappe C. ; Pieraccini D. J. Phys. Org. Chem. 2005, 18, 275.
doi: 10.1002/poc.863 |
3 |
Earle M. J. ; Seddon K. R. Pure Appl. Chem. 2000, 72, 1391.
doi: 10.1351/pac200072071391 |
4 |
Welton T. Coordin. Chem. Rev. 2004, 248, 2459.
doi: 10.1016/j.ccr.2004.04.015 |
5 |
Plechkova N. V. ; Seddon K. R. Chem. Soc. Rev. 2008, 37, 123.
doi: 10.1039/b006677j |
6 |
Thomas M. ; Brehm M. ; Holloczki O. ; Kelemen Z. ; Nyulaszi L. ; Pasinszki T. ; Kirchner B. J. Chem. Phys. 2014, 141, 024510.
doi: 10.1063/1.4887082 |
7 |
Heyden M. ; Sun J. ; Forbert H. ; Mathias G. ; Havenith M. ; Marx D. J. Phys. Chem. Lett. 2012, 3, 2135.
doi: 10.1021/jz300748s |
8 |
Ishiyama T. ; Takahashi H. ; Morita A. J. Phys.: Condens. Matter 2012, 24, 124107.
doi: 10.1088/0953-8984/24/12/124107 |
9 |
Kiefer J. ; Fries J. ; Leipertz A. Appl. Spectrosc. 2007, 61, 1306.
doi: 10.1366/000370207783292000 |
10 |
Bhargava B. L. ; Balasubramanian S. Chem. Phys. Lett. 2006, 417, 486.
doi: 10.1016/j.cplett.2005.10.050 |
11 |
Katsyuba S. A. ; Zvereva E. E. ; Vidis A. ; Dyson P. J. J. Phys. Chem. A 2007, 111, 352.
doi: 10.1021/jp064610i |
12 |
Jeon Y. ; Sung J. ; Seo C. ; Lim H. ; Cheong H. ; Kang M. ; Moon B. ; Ouchi Y. ; Kim D. J. Phys. Chem. B 2008, 112, 4735.
doi: 10.1021/jp7120752 |
13 |
Heimer N. E. ; Del Sesto R. E. ; Meng Z. Z. ; Wilkes J. S. ; Carper W. R. J. Mol. Liq. 2006, 124, 84.
doi: 10.1016/j.molliq.2005.08.004 |
14 |
Zhou G. B. ; Li Y. Z. ; Yang Z. ; Fu F. J. ; Huang Y. P. ; Wan Z. ; Li L. ; Chen X. S. ; Hu N. ; Huang L. L. J. Phys. Chem. C 2016, 120, 5033.
doi: 10.1021/acs.jpcc.6b00307 |
15 |
Xuan X. ; Guo M. ; Pei Y. ; Zheng Y. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 2011, 78, 1492.
doi: 10.1016/j.saa.2011.01.039 |
16 |
Fumino K. ; Wulf A. ; Ludwig R. Angew. Chem. Int. Ed. 2008, 47, 3830.
doi: 10.1002/anie.200705736 |
17 |
Fumino K. ; Peppel T. ; Geppert-Rybczynska M. ; Zaitsau D. H. ; Lehmann J. K. ; Verevkin S. P. ; Kockerling M. ; Ludwig R. Phys. Chem. Chem. Phys. 2011, 13, 14064.
doi: 10.1039/c1cp20732f |
18 |
Brela M. Z. ; Kubisiak P. ; Eilmes A. J. Phys. Chem. B 2018, 122, 9527.
doi: 10.1021/acs.jpcb.8b05839 |
19 |
Dhumal N. R. ; Singh M. P. ; Anderson J. A. ; Kiefer J. ; Kim H. J. J. Phys. Chem. C 2016, 120, 3295.
doi: 10.1021/acs.jpcc.5b10123 |
20 |
Liu T. ; Danten Y. ; Grondin J. ; Vilar R. J. Raman Spectrosc. 2016, 47, 449.
doi: 10.1002/jrs.4835 |
21 |
Liu J. ; Kim H. ; Dhumal N. R. ; Kim H. J. J. Mol. Liq. 2019, 292, 111282.
doi: 10.1016/j.molliq.2019.111282 |
22 |
Paschoal V. H. ; Faria L. F. O. ; Ribeiro M. C. C. Chem. Rev. 2017, 117, 7053.
doi: 10.1021/acs.chemrev.6b00461 |
23 |
Wang Y. ; Voth G. A. J. Am. Chem. Soc. 2005, 127, 12192.
doi: 10.1021/ja053796g |
24 |
Daily J. W. ; Micci M. M. J. Chem. Phys. 2009, 131, 094501.
doi: 10.1063/1.3197850 |
25 |
Shi R. ; Wang Y. J. Phys. Chem. B 2013, 117, 5102.
doi: 10.1021/jp311017r |
26 |
Ricks-Laskoski H. L. ; Snow A. W. J. Am. Chem. Soc. 2006, 128, 12402.
doi: 10.1021/ja064264i |
27 |
Wang Y. J. Phys. Chem. B 2009, 113, 11058.
doi: 10.1021/jp906228d |
28 |
English N. J. ; Mooney D. A. ; O'Brien S. Mol. Phys. 2011, 109, 625.
doi: 10.1080/00268976.2010.544263 |
29 | Chen W. Q. ; Guan Y. J. ; Zhang X. P. ; Deng Y. Q. Acta Phys. -Chim. Sin. 2018, 34, 912. |
陈文琼; 关永吉; 张晓萍; 邓友全. 物理化学学报, 2018, 34, 912.
doi: 10.3866/PKU.WHXB201801091 |
|
30 |
Martinez L. ; Andrade R. ; Birgin E. G. ; Martinez J. M. J. Comput. Chem. 2009, 30, 2157.
doi: 10.1002/jcc.21224 |
31 |
Humphrey W. ; Dalke A. ; Schulten K. J. Mol. Graph. 1996, 14, 33.
doi: 10.1016/0263-7855(96)00018-5 |
32 |
Todorov I. T. ; Smith W. ; Trachenko K. ; Dove M. T. J. Mater. Chem. 2006, 16, 1911.
doi: 10.1039/b517931a |
33 |
Lopes J. N. C. ; Padua A. A. H. J. Phys. Chem. B 2004, 108, 16893.
doi: 10.1021/jp0476545 |
34 |
Jorgensen W. L. ; Maxwell D. S. ; TiradoRives J. J. Am. Chem. Soc. 1996, 118, 11225.
doi: 10.1021/ja9621760 |
35 |
Kaminski G. ; Jorgensen W. L. J. Phys. Chem. 1996, 100, 18010.
doi: 10.1021/jp9624257 |
36 |
Essmann U. ; Perera L. ; Berkowitz M. L. ; Darden T. ; Lee H. ; Pedersen L. G. J. Chem. Phys. 1995, 103, 8577.
doi: 10.1063/1.470117 |
37 |
Nose S. J. Chem. Phys. 1984, 81, 511.
doi: 10.1063/1.447334 |
38 |
Hoover W. G. Phys. Rev. A Gen. Phys. 1985, 31, 1695.
doi: 10.1103/PhysRevA.31.1695 |
39 |
Kowsari M. H. ; Alavi S. ; Ashrafizaadeh M. ; Najafi B. J. Chem. Phys. 2008, 129, 224508.
doi: 10.1063/1.3035978 |
40 |
Praprotnik M. ; Janezic D. ; Mavri J. J. Phys. Chem. A 2004, 108, 11056.
doi: 10.1021/jp046158d |
41 |
Koddermann T. ; Fumino K. ; Ludwig R. ; Canongia Lopes J. N. ; Padua A. A. ChemPhysChem 2009, 10, 1181.
doi: 10.1002/cphc.200900144 |
42 |
Talaty E. R. ; Raja S. ; Storhaug V. J. ; Dölle A. ; Carper W. R. J. Phys. Chem. B 2004, 108, 13177.
doi: 10.1021/jp040199s |
43 |
Avena M. ; Marracino P. ; Liberti M. ; Apollonio F. ; English N. J. J. Chem. Phys. 2015, 142, 141101.
doi: 10.1063/1.4917024 |
44 |
Marracino P. ; Liberti M. ; d'Inzeo G. ; Apollonio F. Bioelectromagnetics 2015, 36, 377.
doi: 10.1002/bem.21916 |
45 |
Chatzipapadopoulos S. ; Zentel T. ; Ludwig R. ; Lutgens M. ; Lochbrunner S. ; Kuhn O. ChemPhysChem 2015, 16, 2519.
doi: 10.1002/cphc.201500433 |
46 |
Luzar A. ; Chandler D. Nature 1996, 379, 55.
doi: 10.1038/379055a0 |
47 |
Zhou G. ; Yang Z. ; Fu F. ; Huang Y. ; Chen X. ; Lu Z. ; Hu N. Ind. Eng. Chem. Res. 2015, 54, 8166.
doi: 10.1021/acs.iecr.5b01624 |
48 |
Roth C. ; Chatzipapadopoulos S. ; Kerlé D. ; Friedriszik F. ; Lütgens M. ; Lochbrunner S. ; Kühn O. ; Ludwig R. New J. Phys. 2012, 14, 105026.
doi: 10.1088/1367-2630/14/10/105026 |
49 | Atkins P. ; de Paula J. Atkins' Physical Chemistry 7th ed Oxford, UK: Oxford University Press, 2002. |
50 |
Zhao Y. ; Dong K. ; Liu X. ; Zhang S. ; Zhu J. ; Wang J. Mol. Simulat. 2012, 38, 172.
doi: 10.1080/08927022.2011.61089 |
[1] | 曹冲, 张裴, 曹立冬, 刘铭鑫, 宋玉莹, 陈鹏, 黄啟良, 韩布兴. 液滴在超疏水植物叶面的沉积:实验和分子动力学模拟[J]. 物理化学学报, 2022, 38(12): 2207006 - . |
[2] | 王欢, 吴云雁, 赵燕飞, 刘志敏. 离子液体介导CO2化学转化研究进展[J]. 物理化学学报, 2021, 37(5): 2010022 - . |
[3] | 吴智伟, 丁伟璐, 张雅琴, 王艳磊, 何宏艳. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2021, 37(10): 2002021 - . |
[4] | 刘璐, 徐玉萍, 陈霞, 洪梅, 佟静. 1-烷基-3-甲基咪唑氯化物焓变的热重分析[J]. 物理化学学报, 2020, 36(11): 2004014 - . |
[5] | 惠淑荣, 赵丽薇, 刘青山, 宋大勇. [C3mim][NTf2]/DEC/[Li][NTf2]体系的基础性质[J]. 物理化学学报, 2020, 36(11): 1910067 - . |
[6] | 胡益民, 韩杰, 郭荣. 非离子表面活性剂Brij 30诱导离子液体型表面活性剂C16imC8Br蠕虫状胶束向凝胶的转变[J]. 物理化学学报, 2020, 36(10): 1909049 - . |
[7] | 张涛,仇运广,罗启超,程曦,赵丽芬,严昕,彭浡,蒋华良,阳怀宇. 钙离子和镁离子浓度变化对磷脂酰乙醇胺-磷脂酰甘油双分子层膜的影响[J]. 物理化学学报, 2019, 35(8): 840 -849 . |
[8] | 杨康,帅骁睿,杨化超,严建华,岑可法. 基于室温离子液体的活化石墨烯粉末超级电容储能性能[J]. 物理化学学报, 2019, 35(7): 755 -765 . |
[9] | 许谢君,肖兴庆,徐首红,刘洪来. 亮氨酸拉链型脂肽对脂质体温敏性调节的分子模拟[J]. 物理化学学报, 2019, 35(6): 598 -606 . |
[10] | 潘明光,赵永升,曾小勤,邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应[J]. 物理化学学报, 2019, 35(6): 624 -629 . |
[11] | 吕康杰,彭燕秋,肖丽,陆君涛,庄林. 醇/水混合溶剂中碱性聚合物电解质独特的溶解行为[J]. 物理化学学报, 2019, 35(4): 378 -384 . |
[12] | 杨化超,薄拯,帅骁睿,严建华,岑可法. 润湿特性对超级电容器储能动力学的影响机理[J]. 物理化学学报, 2019, 35(2): 200 -207 . |
[13] | 龚燕燕,刘海春,张朵,佟静. 醚基功能化离子液体[MOEMIm]Cl和[EOEMIm]Cl热力学性质[J]. 物理化学学报, 2019, 35(11): 1224 -1231 . |
[14] | 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912 -919 . |
[15] | 胡之楠,左剑涛,夏美晨,房大维,臧树良. Pitzer方程应用于离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)溶解焓研究[J]. 物理化学学报, 2018, 34(8): 933 -937 . |
|