物理化学学报 >> 2015, Vol. 31 >> Issue (7): 1406-1412.doi: 10.3866/PKU.WHXB201504272

光化学和辐射化学 上一篇    下一篇

介质阻挡放电等离子体甲烷部分氧化重整制氢

王皓, 宋凌珺, 李兴虎, 岳丽蒙   

  1. 北京航空航天大学交通科学与工程学院, 北京100191
  • 收稿日期:2015-01-23 修回日期:2015-04-27 发布日期:2015-07-08
  • 通讯作者: 宋凌珺 E-mail:songlingjun@buaa.edu.cn
  • 基金资助:

    国家自然科学基金(21106002)和中央高校基本科研业务费专项资金(2011113073)资助项目

Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming

WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng   

  1. School of Transportation Science and Engineering, Beihang University, Beijing 100191, P. R. China
  • Received:2015-01-23 Revised:2015-04-27 Published:2015-07-08
  • Contact: SONG Ling-Jun E-mail:songlingjun@buaa.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Fund of China (21106002) and Fundamental Research Funds for the Central Universities, China (2011113073).

摘要:

在自制的介质阻挡放电等离子体重整制氢装置上进行了甲烷部分氧化重整制氢的实验研究. 本文研究了氧碳(O/C)摩尔比, 进气流量, 放电间隙, 放电区间长度, 填充物的直径、形状和材料, 放电电压和放电频率对甲烷转化率、氢产率和产物的选择性(H2、CO和CO2)的影响. 实验结果表明: 放电区域的参数对甲烷转化率有较大的影响. 甲烷转化率随着放电区域长度的增大而增大, 当放电区域长度从5 cm增大到20 cm时, 甲烷转化率从6.87%增大到22.26%, 增大率为224%. 同时, 放电区域的填充物对产氢效果有较大的影响. 当反应器填充颗粒时, 甲烷转化率比无填充物时高. 选择适当介电常数的填充物具有巨大的实际工程意义. 另外, 氢产率和氢气的选择性随着放电频率的增大而增大, 当放电频率从1.5 kHz 增大到7.0 kHz 时, 氢产率从1.10%增大到9.49%, 氢气的选择性从21.18%增大到30.06%. 实验结果将对碳氢燃料等离子体重整制氢的车载应用提供实验依据.

关键词: 介质阻挡放电, 重整, 制氢, 等离子体, 甲烷, 部分氧化

Abstract:

This paper presents an in-house-designed dielectric barrier discharge (DBD) plasma reformer for hydrogen production via partial oxidation reforming of methane. We examined the effects of oxygen/carbon (O/C) molar ratio, feed flow rate, discharge gap, discharge zone length, filler diameter, filler shape, filler materials, discharge voltage, and discharge frequency on the hydrogen production performance i.e., CH4 conversion rate, H2 yield, and selectivity of products (H2, CO, and CO2). The experimental results showed that the parameters of the discharge zone played an important role in the CH4 conversion rate. For instance, CH4 conversion rate increased with increasing discharge zone lengths. When the discharge zone length increased from 5 to 20 cm, CH4 conversion rate increased from 6.87% to 22.26%, which corresponds to an improvement of 224%. Also, the fillers in the discharge zone strongly influenced the hydrogen production performance. Using reactors with fillers generated higher CH4 conversion rates. Moreover, using fillers with more appropriate dielectric constants is advantageous for practical application. The H2 yield and hydrogen selectivity increased with increasing discharge frequency. Specifically, when the discharge frequency increased from 1.5 to 7.0 kHz, H2 yield increased from 1.10% to 9.49%, and hydrogen selectivity increased from 21.18% to 30.06%. It is believed that the current results would serve as a good guideline in hydrogen production from hydrocarbon fuels by plasma reforming.

Key words: Dielectric barrier discharge, Reforming, Hydrogen production, Plasma, Methane, Partial oxidation