物理化学学报 >> 2015, Vol. 31 >> Issue (7): 1413-1420.doi: 10.3866/PKU.WHXB201505142

光化学和辐射化学 上一篇    下一篇

电极界面缓冲层对P3HT:PC61BM太阳能电池热稳定性的影响

武娜1,2, 骆群1, 吴振武1, 马昌期1   

  1. 1 中国科学院苏州纳米技术与纳米仿生研究所, 印刷电子研究学研究部, 苏州纳米科技协同创新中心, 苏州215123;
    2 中国科学技术大学纳米学院, 苏州215123
  • 收稿日期:2015-02-12 修回日期:2015-05-13 发布日期:2015-07-08
  • 通讯作者: 骆群, 马昌期 E-mail:qluo2011@sinano.ac.cn;cqma2011@sinano.ac.cn
  • 基金资助:

    国家自然科学基金(61306073, 91123034)和江苏省自然科学基金(BK20130346)资助

Influence of Electrode Interfacial Buffer Layers on Thermal Stability of P3HT:PC61BM Solar Cells

WU Na1,2, LUO Qun1, WU Zhen-Wu1, MA Chang-Qi1   

  1. 1 Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Collaborative Innovation Center of Suzhou Nano Science and Technology, Chinese Academy of Science, Suzhou 215123, Jiangsu Province, P. R. China;
    2 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu Province, P. R. China
  • Received:2015-02-12 Revised:2015-05-13 Published:2015-07-08
  • Contact: LUO Qun, MA Chang-Qi E-mail:qluo2011@sinano.ac.cn;cqma2011@sinano.ac.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (61306073, 91123034) and Jiangshu Provincial Natural Science Foundation, China (BK20130346).

摘要:

基于溶液法加工制备的聚合物太阳能电池的高温热稳定性是决定器件能否兼容后续高温热封装工艺, 如热压封装、高温原子层沉积(ALD)等的一个关键. 本文分别利用聚(3, 4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)和MoO3作为阳极缓冲层, 以及ZnO和LiF 作为阴极缓冲层, 制备了结构为氧化铟锡(ITO)/阳极缓冲层/3-己基取代聚噻吩:(6, 6)-苯基C61-丁酸甲酯(P3HT:PC61BM)/阴极缓冲层/Al 的太阳能电池, 系统地比较研究了不同界面缓冲材料对器件光电转换性能及稳定性的影响, 特别是在高温煺火条件下器件的性能稳定性差异. 结果表明, 聚合物太阳能电池的热稳定性同器件的结构以及所用的缓冲层材料有密切的相关性. 其中, 利用MoO3及ZnO分别作为阳极与阴极界面修饰层的P3HT:PC61BM器件在120-150 ℃的温度范围内能够较好地保持器件的光电转换性能. 这一结果为后续需要高温封装工艺的器件提供了有意义的结构优化指导. 此外, 研究结果还表明利用ZnO作为阴极缓冲层能够改善器件的长时间稳定性.

关键词: 聚合物太阳能电池, 热稳定性, 金属氧化物纳米粒子, 电极缓冲层

Abstract:

The high-temperature thermal stability of solution-processed polymer solar cells is a key issue that determines the feasibility of further thermal encapsulation processes, such as thermal lamination or hightemperature atomic layer deposition. In this article, polymer solar cells with poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) or MoO3 as the anode buffer layer (ABL) and ZnO or LiF as the cathode buffer layer (CBL) were fabricated with a device structure of indium tin oxide (ITO)/ABL/poly(3-hexylthiophene): phenyl- C61- butyric acid methyl ester (P3HT:PC61BM)/CBL/Al. Device performances, especially the hightemperature thermal stability of the devices, were studied in detail. The results indicated that the thermal stability of the organic solar cells was highly dependent on the buffer layer material. Devices with MoO3 as ABL and ZnO as CBL showed high thermal stability at a temperature of 120-150 ℃, which ensures the possibility of subsequent thermal processing. In addition, the use of ZnO as the cathode buffer layer could also improve longterm device stability.

Key words: Polymer solar cell, Thermal stability, Metal oxide nanoparticle, Electrode buffer layer