物理化学学报 >> 2015, Vol. 31 >> Issue (4): 764-770.doi: 10.3866/PKU.WHXB201502042

催化和表面科学 上一篇    下一篇

界面聚合法制备PANI/g-C3N4复合催化剂及其热稳定性和可见光催化性能

李宪华1, 张雷刚1, 王雪雪1, 于清波2   

  1. 1 安徽理工大学机械工程学院, 安徽淮南232001;
    2 安徽理工大学材料科学与工程学院, 安徽淮南232001
  • 收稿日期:2014-12-29 修回日期:2015-02-03 发布日期:2015-04-03
  • 通讯作者: 于清波 E-mail:yuqingbo007@163.com
  • 基金资助:

    国家自然科学基金(21401001)和安徽省绿色高分子材料重点实验室资助项目

PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity

LI Xian-Hua1, ZHANG Lei-Gang1, WANG Xue-Xue1, YU Qing-Bo2   

  1. 1 School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui Province, P. R. China;
    2 Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui Province, P. R. China
  • Received:2014-12-29 Revised:2015-02-03 Published:2015-04-03
  • Contact: YU Qing-Bo E-mail:yuqingbo007@163.com
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21401001) and Anhui Province Key Laboratory of Environment- Friendly Polymer Materials, China.

摘要:

利用界面聚合法, 成功将聚苯胺(PANI)纳米棒生长在石墨型氮化碳(g-C3N4)片层上, 制备了PANI/g-C3N4复合光催化剂. 采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、热重分析(TGA)和电化学工作站表征手段考察样品的结构、形貌及性能, 以可见光催化降解亚甲基蓝为模型考察样品的可见光催化活性. 实验结果表明, 在复合材料中的g-C3N4能很好地分散成层状, 并在层间与PANI纳米棒形成复合物, 这种特殊的复合结构不仅利于片状g-C3N4对PANI链段运动的限制及对其降解产物的物理屏蔽, 从而可以提高复合材料的热稳定性, 而且具有优越的可见光催化性能.

关键词: 热稳定性, PANI/g-C3N4, 催化性能

Abstract:

Polyaniline (PANI) nanorods grown on layered graphitic carbon nitride (g-C3N4) sheets are synthesized by interfacial polymerization. The structure, morphology, and properties of the photocatalysts are characterized by Fourier transform infrared (FTIR), X- ray diffraction (XRD), and UV-visible (UV-Vis) spectroscopies, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and electrochemical analysis. Photocatalytic degradation of methylene blue is investigated to determine the photoactivity of the catalyst. The results suggest that g-C3N4 possesses good dispersion with an intercalated nanostructure and interfacial adhesion with PANI. In addition, the PANI/g-C3N4 composites retain the advantage of high thermal stability resident with g-C3N4. This is ascribed to a physical barrier effect on the emanation of degradation products and inhibited polymer motion. The resulting composites also show more intensive photocatalytic activity than does g-C3N4.

Key words: Thermal stability, PANI/g-C3N4, Photocatalytic activity