物理化学学报 >> 2016, Vol. 32 >> Issue (2): 565-572.doi: 10.3866/PKU.WHXB201511301

论文 上一篇    下一篇

BSA与羟磷灰石相互吸附的FTIR-ATR光谱

叶青2,胡仁1,周剑章1,叶艺文1,许朝曦3,林昌健1,林种玉1,*()   

  1. 1 厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室, 福建厦门 361005
    2 浙江师范大学初阳学院, 浙江金华 321004
    3 厦门阿尔特系统工程有限公司, 福建厦门 361005
  • 收稿日期:2015-07-02 发布日期:2016-01-30
  • 通讯作者: 林种玉 E-mail:stzylin@xmu.edu.cn
  • 基金资助:
    国家自然科学基金(51571169)

FTIR-ATR Spectrometry of BSA Adsorption on Hydroxyapatite

Qing YE2,Ren HU1,Jian-Zhang ZHOU1,Yi-Wen YE1,Zhao-Xi XU3,Chang-Jian LIN1,Zhong-Yu LIN1,*()   

  1. 1 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
    2 Chuyang Honors College, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China
    3 Xiamen AERTE System Engineering CO., LTD, Xiamen 361005, Fujian Province, P. R. China
  • Received:2015-07-02 Published:2016-01-30
  • Contact: Zhong-Yu LIN E-mail:stzylin@xmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51571169)

摘要:

采用傅里叶变换红外衰减全反射(FTIR-ATR)光谱法对牛血清白蛋白(BSA)在羟磷灰石(HA)[Ca10(OH)2(PO4)6]表面不同时间的相互吸附作用进行了表征。在BSA溶液作用下,羟磷灰石表面的Ca2+、PO43-和OH-离子初始的溶解和再沉淀使得BSA与HA相互作用层层叠加,在HA表面形成从表层到次表层分子都包含有吸附的BSA的覆盖层,从而加深两者之间的相互作用。经红外差谱法处理过的相关ATR数据表明, BSA与HA之间的相互作用是快速的,并随时间变化进一步加强;来自HA上PO43-的P=O基团对蛋白质肽键的酰胺II带(―CNH)、多肽链的甲基(―PO3)和亚甲基(―CH2)上氢的吸附作用要比P―O快速而且强烈。Ca2+在该吸附过程中起了极其重要的作用,其快速与蛋白质肽键的羰基氧发生作用,并诱导该蛋白质二级结构由β-折叠向α-螺旋和β-转角构象转变;伴随着这一构象变化,蛋白质多肽链上大多数肽键的―C=O和H―N―活性基团从链间氢键交联中释放出来,带动众多的氢分别参与同HA表面的Ca2+、PO43-和OH-离子的相互吸附作用,并牢牢地结合于HA表面;这对硬组织的再生起着重要作用,促进了HA的生物矿化过程。

关键词: 生物材料, 蛋白质吸附作用, 多肽, 红外光谱, FTIR-ATR, 生物矿化作用

Abstract:

The microcosmic process of bovine serum albumin (BSA) adsorbing onto hydroxyapatite (HA) for different time intervals was investigated by Fourier transform infrared attenuated total internal reflectance (FTIRATR) spectrometry. The initial dissolution and re-precipitation of PO43-, Ca2+, and OH- ions from the HA coating led to the occurrence of the coating including adsorbed BSA on the HA from surface-to subsurface-molecular layers and to in-depth interaction between BSA and HA. The subtraction results gained in the adsorption regions of HA and BSA reveal that the binding of P=O, from the phosphate (PO43-), to the hydrogen of amide II, methyl and methene of the BSA appears to be considerably more rapid and stronger than that of the P―O group. In addition, it is very likely that Ca2+ plays an important role in the interaction of BSA with HA. It appears that the binding of Ca2+ to the carbonyl-oxygen of the peptide bond in BSAcaused a significant, molecular, conformational rearrangement of polypeptide backbones from β-pleated sheet to helical circles of α-helix and β-turn. This change appears to have been followed by much hydrogen of polypeptides being driven to bind PO43- and OHeffectively and much ―C=O and H―N―groups of the peptide bond being freed from inter-chain hydrogenbonding to act on Ca2+ and combine strongly with the HA surface. This might reasonably be expected to promote hard tissue regeneration. BSA seems to be activated by the inductive effect of Ca2+ via the molecular rearrangement of polypeptide backbones from pleated sheet to helical circles and in turn reacts strongly on the HA, resulting in profound effects on the course of biomineralization.

Key words: Biomaterial, Protein adsorption, Polypeptide, IR spectroscopy, FTIR-ATR, Biomineralization