物理化学学报 >> 2016, Vol. 32 >> Issue (7): 1658-1665.doi: 10.3866/PKU.WHXB201604111

论文 上一篇    下一篇

钇对石墨烯储氢性能的影响

李媛媛1,赵新新2,宓一鸣1,2,*(),孙改丽1,吴建宝2,汪丽莉2   

  1. 1 上海工程技术大学化学化工学院,上海201620;
    2 上海工程技术大学基础教学学院,上海201620
  • 收稿日期:2016-01-14 发布日期:2016-07-08
  • 通讯作者: 宓一鸣 E-mail:yimingmi@sues.edu.cn
  • 基金资助:
    国家自然科学基金(11504228);上海市教委学位点建设项目(14XKCZ13);上海市教委创新项目基金(10YZ172);上海工程技术大学校研究生创新项目基金(E1-0903-14-01107-14KY0411)

Effect of Y on the Properties of Graphene for Hydrogen Storage

Yuan-Yuan LI1,Xin-Xin ZHAO2,Yi-Ming MI1,2,*(),Gai-Li SUN1,Jian-Bao WU2,Li-Li WANG2   

  1. 1 School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China;
    2 School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
  • Received:2016-01-14 Published:2016-07-08
  • Contact: Yi-Ming MI E-mail:yimingmi@sues.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(11504228);Academic Degree Construction Program of Shanghai Municipal Education Commission, China(14XKCZ13);Innovation Program of Shanghai Municipal Education Commission, China(10YZ172);Shanghai University of Engineering Science Innovation Fund for Graduate Students, China(E1-0903-14-01107-14KY0411)

摘要:

应用基于密度泛函理论的第一性原理方法研究过渡金属钇(Y)修饰对石墨烯储氢性能的影响。考虑Y原子在石墨烯上易形成团簇,采用B原子掺杂有效阻止了团簇形成。通过模拟计算得到的改性体系稳定、储氢性能优异,可吸附6个H2分子,平均吸附能范围为-0.539到-0.655 eV (per H2),理论上满足理想的氢吸附能范围。经Bader电荷初步计算和基于Y/B/graphene (G)体系吸附H2分子的电子态密度及电荷差分密度图分析得,Y原子与石墨烯间通过电荷转移产生结合,与H2分子则发生典型的Kubas型相互作用。Y原子改变了H2分子与石墨烯基的电荷分布,成为连接两者电子云的桥梁,从而增强了H2分子的吸附能。改性石墨烯体系吸附的均为氢分子,有利于在环境温度和压力条件下进行循环控制,是具有良好发展前景的储氢材料之一。

关键词: 石墨烯, Y修饰, 氢分子吸附, 第一性原理, B掺杂

Abstract:

The first-principles plane-wave pseudopotential method within density functional theory formalism is used to investigate the effect of Y atom decoration of graphene on the properties for hydrogen storage. The clustering problem for the Y atoms decorated on graphene is considered, and substitutional boron doping is shown to effectively prevent the clustering of Y atoms on graphene. The geometrical configuration of the modified system is stable and the adsorption properties of H2 are excellent, which can adsorb up to 6 H2 molecules with an average adsorption energy range of -0.539 to -0.655 eV (per H2), as determined by theoretical analyses. This satisfies the theoretical ideal range for hydrogen storage. Moreover, based on the calculation and analysis of the Bader charge, the electronic density of states and the charge density difference of the H2/Y/B/graphene (G) system, it is proved that the Y atom exhibits bonding with graphene by charge transfer and interacts with hydrogen molecules through typical Kubas interactions. The existence of the Y atomalters the charge distribution of the H2 molecules and graphene sheet. Hence, the Y atom becomes a bridge linking the H2 molecules and graphene sheet. Thereby, the adsorption energies of the H2 molecule are adjusted to the reasonable region. The modified system exhibits excellent potential as one of the most suitable candidates for a hydrogen storage medium in the molecular state at near ambient conditions.

Key words: Graphene, Y decoration, H2 molecule adsorption, First-principles, B doping