物理化学学报 >> 2017, Vol. 33 >> Issue (6): 1197-1204.doi: 10.3866/PKU.WHXB201703293

论文 上一篇    下一篇

多壁纳米碳管约束二硫化锡作为锂离子电池负极的电化学行为

谷泽宇1,高嵩1,黄昊1,*(),靳晓哲1,吴爱民1,曹国忠1,2   

  1. 1 大连理工大学材料科学与工程学院,三束材料改性教育部重点实验室,辽宁大连116024
    2 华盛顿大学材料科学与工程学院,西雅图,华盛顿州98195,美国
  • 收稿日期:2017-01-04 发布日期:2017-05-19
  • 通讯作者: 黄昊 E-mail:huanghao@dlut.edu.cn
  • 基金资助:
    国家科学自然基金(51171033);常州工业支撑计划(CE20160022);常州企业领军型创新人才引进培育项目(CQ20153002);中央高校基本科研业务费重点实验室专项经费(DUT16LAB03);中央高校基本科研业务费重点实验室专项经费(DUT15LAB05)

Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries

Ze-Yu GU1,Song GAO1,Hao HUANG1,*(),Xiao-Zhe JIN1,Ai-Min WU1,Guo-Zhong CAO1,2   

  1. 1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
    2 Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
  • Received:2017-01-04 Published:2017-05-19
  • Contact: Hao HUANG E-mail:huanghao@dlut.edu.cn
  • Supported by:
    The project was supported by the National Natural Science Foundation of China(51171033);Science and Technology Supported Plan (Industry Field) of Changzhou, China(CE20160022);Project of Innovative Talents Introduction and Training of Changzhou, China(CQ20153002);Fundamental Research Funds for the Central Universities, China(DUT16LAB03);Fundamental Research Funds for the Central Universities, China(DUT15LAB05)

摘要:

通过两步法制备多壁纳米碳管约束SnS2纳米材料(SnS2@MWCNT)。采用直流电弧等离子体法在甲烷气氛下制备多壁纳米碳管约束金属锡纳米结构(Sn@MWCNT)作为前驱体,再通过硫化反应获得SnS2@MWCNT纳米结构。对材料进行Raman、X射线衍射(XRD)、透射电镜(TEM)等物理表征的结果显示多壁纳米碳管长约400 nm,表面碳层晶化程度良好,碳层厚度约10 nm。以SnS2@MWCNT纳米结构作为负极材料的锂离子电池显示出较为良好的电化学性能。其首次充放电库伦效率为71%,循环50次后,容量仍保持703 mAh·g-1。SnS2@MWCNT纳米结构电极的高容量特性源于多种活性物质共同提供容量,且各物质反应平台不同。平台呈现明显阶梯型,缓解了体积膨胀效应对电极材料的破坏。

关键词: 锂离子电池, 多壁纳米碳管, 二硫化锡, 负极, 纳米材料

Abstract:

Multi-walled carbon nanotube constrained SnS2 (SnS2@MWCNT) nanostructure is successfully realized through a facile 2-step process. Firstly, DC arc-discharge method is applied to fabricate Sn@MWCNT nanoparticles as the precursor that is subsequently converted into SnS2@MWCNT through low-temperature vulcanization. Various analytical methods, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy, are used to ascertain the microstructure and morphology of the SnS2@MWCNT nanoparticles. The results show that the SnS2@MWCNT nanoparticles have a uniform structure of SnS2 half-filled MWCNTs with average thickness of 10 nm and average length of ~400 nm. The electrochemical properties of the as-prepared SnS2@MWCNT nanoparticles are studied using the nanoparticles as anode materials in Li-ion batteries. The SnS2@MWCNT electrode presents high initial Coulombic efficiency of 71% and maintains a capacity of 703 mAh·g-1 after 50 cycles. Excellent performance of the batteries benefits from the active electrochemical reactions of various chemical components, multi-step lithiation/delithiation behaviors, and the structural constraint from the MWCNTs.

Key words: Lithium-ion battery, Multi-walled carbon Nanotube, Tin disulfide, Anode, Nanomaterial