物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1904026.doi: 10.3866/PKU.WHXB201904026
所属专题: 庆祝唐有祺院士百岁华诞专刊
任熠1,2,3,4,刘清宇1,3,4,*(),赵艳霞1,3,4,杨祁1,3,4,何圣贵1,2,3,4,*()
收稿日期:
2019-04-08
录用日期:
2019-04-25
发布日期:
2019-04-29
通讯作者:
刘清宇,何圣贵
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
基金资助:
Yi Ren1,2,3,4,Qing-Yu Liu1,3,4,*(),Yan-Xia Zhao1,3,4,Qi Yang1,3,4,Sheng-Gui He1,2,3,4,*()
Received:
2019-04-08
Accepted:
2019-04-25
Published:
2019-04-29
Contact:
Qing-Yu Liu,Sheng-Gui He
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
Supported by:
摘要:
金属正离子与甲烷的反应活性有着广泛的研究,但已报道的离子分子反应通常在单次碰撞或低碰撞能条件下发生。本文介绍最近搭建的一个由迁移管与离子漏斗组成的离子分子反应装置,在多次碰撞与可变碰撞能条件下研究离子分子反应。离子源产生的Au+在迁移管内与甲烷反应,经漏斗与离子阱收集后由质谱检测。该反应装置的反应气压可达100 Pa,且离子与分子的碰撞能可通过迁移管与离子漏斗间的电势差调节。利用该装置,我们研究了闭壳层Au+离子与甲烷的反应,并观测到碳―碳偶联产物AuC2H4+生成。密度泛函理论计算表明经由Au―CH2与Au―CH3物种的两条反应通道均可发生碳―碳偶联反应(Au+ + 2CH4→ AuC2H4+ + 2H2)。离子轨迹模拟表明迁移管与漏斗间的电场可提供足够的碰撞能促进碳―碳偶联反应发生。
任熠,刘清宇,赵艳霞,杨祁,何圣贵. 多次碰撞条件下金阳离子诱导的甲烷碳―碳偶联[J]. 物理化学学报, 2020, 36(1), 1904026. doi: 10.3866/PKU.WHXB201904026
Yi Ren,Qing-Yu Liu,Yan-Xia Zhao,Qi Yang,Sheng-Gui He. C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1904026. doi: 10.3866/PKU.WHXB201904026
Fig 1
A schematic diagram of the reflectron time-of-flight mass spectrometer coupled with a laser ablation ion source, a reactor composed of a drift tube and an ion funnel, and a linear ion trap. The parts labeled: 1, laser ablation ion source; 2, drift tube; 3, ion funnel; 4, stacked ring radio frequency ion guide; 5, skimmer (2 mm diameter); 6, 8, and 11, Einzel lens; 7, linear ion trap; 9, electrodes for accelerating ions; 10, deflectors; 12, reflector; 13, dual microchannel plate detector; 14, port for drift gas; 15, port for capacitance manometer; 16, electrical feedthrough; 17, stainless steel screw; 18, and 21, polyetheretherketone spacer; 19, polyetheretherketone tube; 20, polytetrafluoroethylene washer. Color online."
Fig 2
A schematic diagram of a linear ion trap (a) and the pulsed events (b–f) to run the trap. The parts labeled: 1 and 2, cap electrodes; 3, hexapole rods; 4, cell for confining cooling gas. The intensity of the pulsed cations arrived at the trap is shown in (b). The electric pulses shown as U1 (c), U2 (d), and U3 (e) (RF components superimposed) are applied to parts 1-3, respectively. The pressure of cooling gas (He) in Part 4 is shown as PHe (f). The operating frequency of the trap is 10 Hz (i.e. 100 ms). "
Fig 3
TOF mass spectra for the reactions of Au+ with (a) He, (b) 0.5% CH4 seeded in He, (c) 5.0% CH4 seeded in He, and (d) 2.0% CD4 seeded in He in the DT-IF reactor at the drift pressure about 100 Pa. TOF mass spectrum for the reaction of Au+ with CH4 in the ion trap reactor was shown in (e). The insets in panels (a–d) show the amplified (by a factor of 20) ion signals for Mass between 210 and 220 a.m.u. In panel (e), the signal for Mass between 197.5 and 250 a.m.u. was amplified by a factor of 20."
Fig 4
TOF mass spectra for the reactions of Au+ with 5.0% CH4 seeded in 100 Pa He under UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). The GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp–p, respectively. The peaks labeled: 1, AuCH3+; 2, AuHCH4+; 3, AuH2O+; 4, AuH3O+; 5, AuC2H2+; 6, AuC2H5+; 7, Au(CH4)(H2O)+; 8, Au(H2O)2+; 9, AuC3H5+; 10, Au(C2H4)(CH4)+; and 11, Au(C2H4)(H2O)+. "
Fig 5
Distribution of center-of-mass collisional energies (Ec) between Au+ and CH4 with respect to the relative positions of the ions along the axis of the DF-IF reactor at the UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). In the ion trajectory simulations to determine the Ec values, the GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp-p, respectively. Color scale represents the number of collisions within 1 mm interval along the axis of the reactor. The dashed lines denote the region between the rear electrode of DT and the head electrode of IF."
Fig 7
TPSS calculated potential energy profiles for the reaction of Au+ with two CH4 to generate AuC2H4+ and two H2 molecules involving Au-CH2 (a) and Au-CH3 (b) as the intermediates. The relative energies of AuCH2+ + H2 + CH4 (1'), AuCH3+ + H + CH4 (2'), and AuH+ + CH3 + CH4 (3') are also shown for comparison. The zero-point energy corrected energies of IMs, TSs, and products with respect to the separated reactants are given in eV. Some bond lengths are given in pm. For comparison, the B3LYP/6-311+G(d)/SDD calculated energies for species in 1-4, 3/4 and 1'–3' are shown in the parentheses."
1 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/s0920-5861(00)00456-9 |
2 |
Caballero A. ; Pérez P. J. Chem. Soc. Rev. 2013, 42, 8809.
doi: 10.1039/c3cs60120j |
3 |
Saha D. ; Grappe H. A. ; Chakraborty A. ; Orkoulas G. Chem. Rev. 2016, 116, 11436.
doi: 10.1021/acs.chemrev.5b00745 |
4 |
Ismagilov Z. R. ; Matus E. V. ; Tsikoza L. T. Energy Environ. Sci. 2008, 1, 526.
doi: 10.1039/b810981h |
5 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/c3cs60259a |
6 |
Schwach P. ; Pan X. ; Bao X. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
7 |
Schwarz H. ; González-Navarrete P. ; Li J. ; Schlangen M. ; Sun X. ; Weiske T. ; Zhou S. Organometallics 2017, 36, 8.
doi: 10.1021/acs.organomet.6b00372 |
8 |
Ding X.-L. ; Wu X.-N. ; Zhao Y.-X. ; He S.-G. Acc. Chem. Res. 2012, 45, 382.
doi: 10.1021/ar2001364 |
9 |
Feyel S. ; Döbler J. ; Schröder D. ; Sauer J. ; Schwarz H. Angew. Chem. Int. Ed. 2006, 45, 4681.
doi: 10.1002/anie.200600188 |
10 |
Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A. Angew. Chem. Int. Ed. 2012, 51, 817.
doi: 10.1002/anie.201107042 |
11 |
Lang S. M. ; Frank A. ; Bernhardt T. M. J. Phys. Chem. C 2013, 117, 9791.
doi: 10.1021/jp312852r |
12 |
Canale V. ; Zavras A. ; Khairallah G. N. ; d'Alessandro N. ; O'Hair R. A. J. Eur. J. Mass Spectrom. 2015, 21, 557.
doi: 10.1255/ejms.1332 |
13 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
14 |
Caballero A. ; Despagnet-Ayoub E. ; Díaz-Requejo M. M. ; Díaz-Rodríguez A. ; González-Núñez M. E. ; Mello R. ; Muñoz B. K. ; Ojo W. S. ; Asensio G. ; Etienne M. ; et al Science 2011, 332, 835.
doi: 10.1126/science.1204131 |
15 |
Guo X. ; Fang G. ; Li G. ; Ma H. ; Fan H. ; Yu L. ; Ma C. ; Wu X. ; Deng D. ; Wei M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
16 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
17 |
Tonkyn R. ; Ronan M. ; Weisshaar J. C. J. Phys. Chem. 1988, 92, 92.
doi: 10.1021/j100312a022 |
18 |
Irikura K. K. ; Beauchamp J. L. J. Phys. Chem. 1991, 95, 8344.
doi: 10.1021/j100174a057 |
19 |
Irikura K. K. ; Beauchamp J. L. J. Am. Chem. Soc. 1991, 113, 2769.
doi: 10.1021/ja00007a070 |
20 |
Cornehl H. H. ; Heinemann C. ; Schröder D. ; Schwarz H. Organometallics 1995, 14, 992.
doi: 10.1021/om00002a053 |
21 |
Schwarz H. ; Schröder D. Pure Appl. Chem. 2000, 72, 2319.
doi: 10.1351/pac200072122319 |
22 |
Shayesteh A. ; Lavrov V. V. ; Koyanagi G. K. ; Bohme D. K. J. Phys. Chem. A 2009, 113, 5602.
doi: 10.1021/jp900671c |
23 |
van Koppen P. A. M. ; Kemper P. R. ; Bushnell J. E. ; Bowers M. T. J. Am. Chem. Soc. 1995, 117, 2098.
doi: 10.1021/ja00112a026 |
24 |
Sunderlin L. S. ; Armentrout P. B. J. Am. Chem. Soc. 1989, 111, 3845.
doi: 10.1021/ja00193a015 |
25 |
Haynes C. L. ; Chen Y.-M. ; Armentrout P. B. J. Phys. Chem. 1995, 99, 9110.
doi: 10.1021/j100022a024 |
26 |
Armentrout P. B. ; Chen Y.-M. Int. J. Mass Spectrom. 2017, 413, 135.
doi: 10.1016/j.ijms.2016.05.003 |
27 |
Li F.-X. ; Armentrout P. B. J. Chem. Phys. 2006, 125, 133114.
doi: 10.1063/1.2220038 |
28 |
Zhou S. ; Li J. ; Wu X.-N. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2016, 55, 441.
doi: 10.1002/anie.201509320 |
29 |
Karakaya C. ; Kee R. J. Prog. Energy Combust. Sci. 2016, 55, 60.
doi: 10.1016/j.pecs.2016.04.003 |
30 |
Tomkins P. ; Ranocchiari M. ; van Bokhoven J. A. Acc. Chem. Res. 2017, 50, 418.
doi: 10.1021/acs.accounts.6b00534 |
31 |
Sun K. ; Ginosar D. M. ; He T. ; Zhang Y. ; Fan M. ; Chen R. Ind. Eng. Chem. Res. 2018, 57, 1768.
doi: 10.1021/acs.iecr.7b04707 |
32 |
Geusic M. E. ; Morse M. D. ; O'Brien S. C. ; Smalley R. E. Rev. Sci. Instrum. 1985, 56, 2123.
doi: 10.1063/1.1138381 |
33 |
Smith D. ; Španěl P. Mass Spectrom. Rev. 2005, 24, 661.
doi: 10.1002/mas.20033 |
34 |
Melko J. J. ; Ard S. G. ; Shuman N. S. ; Pedder R. E. ; Taormina C. R. ; Viggiano A. A. Rev. Sci. Instrum. 2015, 86, 084101.
doi: 10.1063/1.4927716 |
35 |
McDonald D. C. ; Sweeny B. C. ; Ard S. G. ; Melko J. J. ; Ruliffson J. E. ; White M. C. ; Viggiano A. A. ; Shuman N. S. J. Phys. Chem. A 2018, 122, 6655.
doi: 10.1021/acs.jpca.8b02513 |
36 |
Gronert S. Mass Spectrom. Rev. 2005, 24, 100.
doi: 10.1002/mas.20008 |
37 |
Douglas D. J. ; Frank A. J. ; Mao D. Mass Spectrom. Rev. 2005, 24, 1.
doi: 10.1002/mas.20004 |
38 |
Nibbering N. M. M. Acc. Chem. Res. 1990, 23, 279.
doi: 10.1021/ar00177a003 |
39 |
Teloy E. ; Gerlich D. Chem. Phys. 1974, 4, 417.
doi: 10.1016/0301-0104(74)85008-1 |
40 |
Armentrout P. B. ; Beauchamp J. L. Acc. Chem. Res. 1989, 22, 315.
doi: 10.1021/ar00165a004 |
41 |
May J. C. ; McLean J. A. Anal. Chem. 2015, 87, 1422.
doi: 10.1021/ac504720m |
42 |
Lanucara F. ; Holman S. W. ; Gray C. J. ; Eyers C. E. Nat. Chem. 2014, 6, 281.
doi: 10.1038/nchem.1889 |
43 |
Zhan X. ; Duan J. ; Duan Y. Mass Spectrom. Rev. 2013, 32, 143.
doi: 10.1002/mas.21357 |
44 |
Yuan B. ; Koss A. R. ; Warneke C. ; Coggon M. ; Sekimoto K. ; de Gouw J. A. Chem. Rev. 2017, 117, 13187.
doi: 10.1021/acs.chemrev.7b00325 |
45 |
Kučera M. ; Stano M. ; Wnorowska J. ; Barszczewska W. ; Loffhagen D. ; Matejčík Š. Eur. Phys. J. D 2013, 37, 234.
doi: 10.1140/epjd/e2013-40401-2 |
46 |
Gao H. ; Niu W. ; Huang C. ; Hong Y. ; Shen C. ; Wang H. ; Lu Y. ; Chen X. ; Xia L. ; Jiang H. ; Chu Y. Int. J. Mass spectrom. 2015, 376, 1.
doi: 10.1016/j.ijms.2014.11.001 |
47 |
Kemper P. R. ; Bowers M. T. J. Am. Soc. Mass. Spectrom. 1990, 1, 197.
doi: 10.1016/1044-0305(90)85036-l |
48 |
Backe H. ; Dretzke A. ; Horn R. ; Kolb T. ; Lauth W. ; Repnow R. ; Sewtz M. ; Trautmann N. Hyperfine Interact. 2006, 162, 77.
doi: 10.1007/s10751-005-9210-4 |
49 |
Wyttenbach T. ; Kemper P. R. ; Bowers M. T. Int. J. Mass Spectrom. 2001, 212, 13.
doi: 10.1016/s1387-3806(01)00517-6 |
50 |
Tang K. ; Shvartsburg A. A. ; Lee H. N. ; Prior D. C. ; Buschbach M. A. ; Li F. ; Tolmachev A. V. ; Anderson G. A. ; Smith R. D. Anal. Chem. 2005, 77, 3330.
doi: 10.1021/ac048315a |
51 |
Koeniger S. L. ; Merenbloom S. I. ; Valentine S. J. ; Jarrold M. F. ; Udseth H. R. ; Smith R. D. ; Clemmer D. E. Anal. Chem. 2006, 78, 4161.
doi: 10.1021/ac051060w |
52 |
Kelly R. T. ; Tolmachev A. V. ; Page J. S. ; Tang K. ; Smith R. D. Mass Spectrom. Rev. 2010, 29, 294.
doi: 10.1002/mas.20232 |
53 |
Shi L. ; Holliday A. E. ; Bohrer B. C. ; Kim D. ; Servage K. A. ; Russell D. H. ; Clemmer D. E. J. Am. Soc. Mass. Spectrom. 2016, 27, 1037.
doi: 10.1007/s13361-016-1372-6 |
54 |
Wagner N. D. ; Clemmer D. E. ; Russell D. H. Anal. Chem. 2017, 89, 10094.
doi: 10.1021/acs.analchem.7b02932 |
55 |
Yuan Z. ; Liu Q.-Y. ; Li X.-N. ; He S.-G. Int. J. Mass Spectrom. 2016, 407, 62.
doi: 10.1016/j.ijms.2016.07.004 |
56 |
Li F.-X. ; Gorham K. ; Armentrout P. B. J. Phys. Chem. A 2010, 114, 11043.
doi: 10.1021/jp100566t |
57 |
Zhao Y. X. ; Li Z. Y. ; Yuan Z. ; Li X. N. ; He S. G. Angew. Chem. Int. Ed. 2014, 53, 9482.
doi: 10.1002/anie.201403953 |
58 |
Yuan Z. ; Li Z.-Y. ; Zhou Z.-X. ; Liu Q.-Y. ; Zhao Y.-X. ; He S.-G. J. Phys. Chem. C 2014, 118, 14967.
doi: 10.1021/jp5040344 |
59 | SIMION® Version 8.1. Scientific Instrument Services, Inc.TM 2011. |
60 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009. |
61 |
Tao J. ; Perdew J. P. ; Staroverov V. N. ; Scuseria G. E. Phys. Rev. Lett. 2003, 91, 146401.
doi: 10.1103/PhysRevLett.91.146401 |
62 |
Li Z.-Y. ; Li H.-F. ; Zhao Y.-X. ; He S.-G. J. Am. Chem. Soc. 2016, 138, 9437.
doi: 10.1021/jacs.6b03940 |
63 |
Meng J.-H. ; He S.-G. J. Phys. Chem. Lett. 2014, 5, 3890.
doi: 10.1021/jz502057n |
64 |
Kanai Y. ; Wang X. ; Selloni A. ; Car R. J. Chem. Phys. 2006, 125, 234104.
doi: 10.1063/1.2403861 |
65 |
Krishnan R. ; Binkley J. S. ; Seeger R. ; Pople J. A. J. Chem. Phys. 1980, 72, 650.
doi: 10.1063/1.438955 |
66 |
Andrae D. ; Häuϐermann U. ; Dolg M. ; Stoll H. ; Preuϐ H. Theor. Chim. Acta 1990, 77, 123.
doi: 10.1007/bf01114537 |
67 |
Schlegel H. B. J. Comput. Chem. 1982, 3, 214.
doi: 10.1002/jcc.540030212 |
68 |
Berente I. ; Náray-Szabó G. J. Phys. Chem. A 2006, 110, 772.
doi: 10.1021/jp054116z |
69 |
Gonzalez C. ; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
doi: 10.1063/1.456010 |
70 |
Gonzalez C. ; Schlegel H. B. J. Phys. Chem. 1990, 94, 5523.
doi: 10.1021/j100377a021 |
71 |
Zhang T. ; Li Z.-Y. ; Zhang M.-Q. ; He S.-G. J. Phys. Chem. A 2016, 120, 4285.
doi: 10.1021/acs.jpca.6b03836 |
72 |
Lang S. M. ; Bernhardt T. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2010, 49, 980.
doi: 10.1002/anie.200905643 |
[1] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[2] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[3] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[4] | 何展军, 黄敏, 林铁军, 钟良枢. 光热催化甲烷干重整研究进展[J]. 物理化学学报, 2023, 39(9): 2212060 -0 . |
[5] | 李萌, 杨甫林, 常进法, Schechter Alex, 冯立纲. MoP-NC纳米球负载Pt纳米粒子用于高效甲醇电解[J]. 物理化学学报, 2023, 39(9): 2301005 -0 . |
[6] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[7] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[8] | 薛国勇, 李静, 陈俊超, 陈代前, 胡晨吉, 唐凌飞, 陈博文, 易若玮, 沈炎宾, 陈立桅. 单离子聚合物快离子导体[J]. 物理化学学报, 2023, 39(8): 2205012 -0 . |
[9] | 袁干印, 奚政, 王楚, 孙晓环, 韩杰, 郭荣. 超分子手性聚苯胺-金复合纳米酶的构建及其对映选择性催化[J]. 物理化学学报, 2023, 39(7): 2212061 -0 . |
[10] | 赵信硕, 邱海燕, 邵依, 王攀捷, 余石龙, 李海, 周郁斌, 周战, 马录芳, 谭超良. 银纳米粒子修饰的二维金属-有机框架纳米片用于光热增强银离子释放抗菌[J]. 物理化学学报, 2023, 39(7): 2211043 -0 . |
[11] | 王晶晶, 曹贵强, 段瑞贤, 李向阳, 李喜飞. 金属单原子催化剂增强硫正极动力学的研究进展[J]. 物理化学学报, 2023, 39(5): 2212005 -0 . |
[12] | 陈晨阳, 赵永智, 李园园, 刘金平. 高电压/宽温域水系碱金属离子电池的研究进展[J]. 物理化学学报, 2023, 39(5): 2211005 -0 . |
[13] | 卢尔君, 陶俊乾, 阳灿, 侯乙东, 张金水, 王心晨, 付贤智. 碳包覆Pd/TiO2光催化产氢协同胺类选择性氧化合成亚胺[J]. 物理化学学报, 2023, 39(4): 2211029 -0 . |
[14] | 项景超, 李静君, 杨雪, 高水英, 曹荣. 阳离子镍基MOF自组装CdS/PFC-8催化剂用于可见光光催化选择性苯甲醇氧化耦合产氢[J]. 物理化学学报, 2023, 39(4): 2205039 -0 . |
[15] | 尹倩, 宋慧婷, 徐明, 鄢红, 赵宇飞, 段雪. 碳酸盐炼制共热耦合甲烷干重整制高附加值化学品发展展望[J]. 物理化学学报, 2023, 39(3): 2210026 -0 . |
|