物理化学学报 >> 2021, Vol. 37 >> Issue (3): 1912050.doi: 10.3866/PKU.WHXB201912050
吴传丽1, 梁文慧1, 樊晶晶1, 曹钰贤2, 吴萍1, 蔡称心1,*()
收稿日期:
2019-12-23
录用日期:
2020-01-24
发布日期:
2020-03-03
通讯作者:
蔡称心
E-mail:cxcai@njnu.edu.cn
基金资助:
Chuanli Wu1, Wenhui Liang1, Jingjing Fan1, Yuxian Cao2, Ping Wu1, Chenxin Cai1,*()
Received:
2019-12-23
Accepted:
2020-01-24
Published:
2020-03-03
Contact:
Chenxin Cai
E-mail:cxcai@njnu.edu.cn
About author:
Chenxin Cai, Email: cxcai@njnu.edu.cn; Tel.: +86-25-85891780Supported by:
摘要:
蛋白质分子的电子传输(ETp)性能,即导带(CB)和价带(VB)的能量差(带隙)是影响蛋白质电子器件性能的主要因素之一。因此,调控蛋白质ETp带隙是提高这些电子器件性能并扩展其应用领域的重要途径。本文报道一种通过外部分子结合调控蛋白质ETp带隙的方法。以氯化血红素(hemin)与牛血清白蛋白(BSA)结合为例,首先运用分子对接方法从理论上确定hemin分子能结合到BSA分子IIA域的疏水口袋中,位于Tpr213附近;然后实验(荧光光谱和吸收光谱)证实hemin与BSA结合后,能形成hemin-BSA复合物,并且没有改变BSA的原有结构;最后将hemin-BSA通过BSA分子表面Cys34的―SH固定在金电极表面,形成有序的分子层,研究其ETp性能;I–V结果表明,BSA表现出半导体的ETp特征,并且hemin的结合能使BSA的带隙由原来的~1.50 ± 0.05 eV降低到~0.93 ± 0.05 eV。本文的结果为调控蛋白质分子的ETp带隙提供了一种简单有效的方法,通过选择不同的结合分子能使蛋白质分子的带隙调控至所需要的范围,并且形成的蛋白质复合物还能用于各种电子器件的制作。
吴传丽, 梁文慧, 樊晶晶, 曹钰贤, 吴萍, 蔡称心. 氯化血红素分子对牛血清白蛋白电子传输能级的调控[J]. 物理化学学报, 2021, 37(3), 1912050. doi: 10.3866/PKU.WHXB201912050
Chuanli Wu, Wenhui Liang, Jingjing Fan, Yuxian Cao, Ping Wu, Chenxin Cai. Regulating Electron Transport Band Gaps of Bovine Serum Albumin by Binding Hemin[J]. Acta Phys. -Chim. Sin. 2021, 37(3), 1912050. doi: 10.3866/PKU.WHXB201912050
Fig 2
(a) The most stable docking structure of the hemin molecule at subdomain IIA of the BSA molecule. The molecular structure of hemin is also depicted. (b) Bound hemin positioning inside the hydrophobic cavity composed of the hydrophobic amino acid residues in subdomain IIA of the BSA. Red represents negative charge, and blue represents positive charge. The surface potential ranges from -0.1e to 0.1e. (c) Illustration of the amino acid residues in the vicinity of the bound hemin. The hydrogen bonds are shown by dashed green lines. (d) Illustration of the relative position of the bound hemin in subdomain IIA of the BSA to the Trp213 residue."
Fig 3
(a) Absorption spectra of free BSA (a1, 5 μmol·L-1), hemin (a2, 5 μmol·L-1), and hemin-BSA (a3, 5 μmol·L-1) in PBS, and the hemin-BSA immobilized on the Au substrate surface (a4). (b) Fluorescence emission spectra of BSA (b1, 5 μmol·L-1), hemin-BSA (b2, 5 μmol·L-1), and hemin alone (b3, 5 μmol·L-1) in phosphate buffer solution (PBS, 10 mmol·L-1, pH 7.4). The spectra were recorded under excitation of 295 nm. (c) CD spectra of free BSA (c1, 1 μmol·L-1), hemin-BSA (c2, 1 μmol·L-1), and hemin (c3, 1 μmol·L-1) in PBS, and the hemin-BSA immobilized on the Au substrate surface (c4)."
Fig 6
(a) I–V responses of free BSA, hemin-BSA, and apo-hemin-BSA immobilized on the Au substrate surface. (b) I–V responses of the hemin immobilized on the Au substrate surface. I–V responses presented here are the average of 15 different measurements on three separate samples (five measurements at different points on each sample). (c) Semi-logarithmic plot of the I–V response curves for free BSA and hemin-BSA immobilized on the Au substrate surface. (d and e) Differential conductance spectra of free BSA (d) and hemin-BSA (e). The vertical lines in (d) and (e) represent Fermi energies, which are aligned to 0 V. (f) Schematic illustration of the CB and VB band levels and the heights of the band gaps of BSA and hemin-BSA. The values of the CB and VB presented here are average values of the 15 measurements."
1 |
Bostick C. D. ; Mukhopadhyay S. ; Pecht I. ; Sheves M. ; Cahen D. ; Lederman D. Rep. Prog. Phys. 2018, 81, 026601.
doi: 10.1088/1361-6633/aa85f2 |
2 |
Zeng Y. ; Sun B. ; Yu. H. Y. ; Wang X. ; Peng H. ; Chen Y. ; Zhu S. ; Mao S. Mater. Today Chem. 2019, 13, 18e24.
doi: 10.1016/j.mtchem.2019.04.008 |
3 |
Richter S. ; Mentovich E. ; Elnathan R. Adv. Mater. 2018, 30, 1706941.
doi: 10.1002/adma.201706941 |
4 |
Fereiro J. A. ; Porat G. ; Bendikov T. ; Pecht I. ; Sheves M. ; Cahen D. J. Am. Chem. Soc. 2018, 140, 13317.
doi: 10.1021/jacs.8b07742 |
5 |
Blumberger J. Curr. Opin. Chem. Biol. 2018, 47, 24.
doi: 10.1016/j.cbpa.2018.06.021 |
6 |
Amdursky N. ; Marchak D. ; Sepunaru L. ; Pecht I. ; Sheves M. ; Cahen D. Adv. Mater. 2014, 26, 7142.
doi: 10.1002/adma.201402304 |
7 |
Ron I. ; Sepunaru L. ; Itzhakov S. ; Belenkova T. ; Friedman N. ; Pecht I. ; Sheves M. ; Cahen D. J. Am. Chem. Soc. 2010, 132, 4131.
doi: 10.1021/ja907328r |
8 |
Fereiro J. A. ; Yu X. ; Pecht I. ; Sheves M. ; Cuevas J. C. ; Cahen D. Proc. Natl. Acad. Sci. USA 2018, 115, E4577.
doi: 10.1073/pnas.1719867115 |
9 |
Metkar S. K. ; Girigoswami K. Biocatal. Agric. Biotechnol. 2019, 17, 271.
doi: 10.1016/j.bcab.2018.11.029 |
10 |
Mayorgamartinez C. C. ; Gusmao R. ; Sofer Z. ; Pumera M. Angew. Chem. Int. Ed. 2019, 58, 134.
doi: 10.1002/anie.201808846 |
11 | Zhang G. L. ; Pan X. H. ; Kan J. Q. ; Zhang J. H. ; Li Y. F. Acta Phys. -Chim. Sin. 2003, 19, 533. |
张国林; 潘献华; 阚锦晴; 张景辉; 李永舫; 物理化学学报, 2003, 19, 533.
doi: 10.3866/PKU.WHXB20030611 |
|
12 | He C. X. ; Yuan A. P. ; Zhang Q. L. ; Ren X. Z. ; Li C. H. ; Liu J. H. Acta Phys. -Chim. Sin. 2012, 28, 2721. |
何传新; 袁安朋; 张黔玲; 任祥忠; 李翠华; 刘剑洪; 物理化学学报, 2012, 28, 2721.
doi: 10.3866/PKU.WHXB201207191 |
|
13 |
Qiu Y. ; Deng D. ; Deng Q. ; Wu P. ; Zhang H. ; Cai C. J. Mater. Chem. B 2015, 3, 4487.
doi: 10.1039/C5TB00638D |
14 | Ma G. X. ; Zhong H. ; Lu T. H. ; Xia Y. Y. Acta Phys. -Chim. Sin. 2007, 23, 1053. |
马国仙; 仲慧; 陆天虹; 夏永姚; 物理化学学报, 2007, 23, 1053.
doi: 10.3866/PKU.WHXB20070717 |
|
15 |
Chen L. ; Yang G. ; Wu P. ; Cai C. Biosens. Bioelectron. 2017, 96, 294.
doi: 10.1016/j.bios.2017.05.022 |
16 |
Artés J. M. ; Díez-Pérez I. ; Gorostiza P. Nano Lett. 2012, 12, 2679.
doi: 10.1021/nl2028969 |
17 | Hayierbiek K. ; Zhao S. X. ; Yang Y. ; Zeng H. Acta Phys. -Chim. Sin. 2015, 31, 1715. |
库里松·哈依尔别克; 赵淑贤; 杨阳; 曾涵; 物理化学学报, 2015, 31, 1715.
doi: 10.3866/PKU.WHXB201506231 |
|
18 | Zeng H. ; Liao L. W. ; Li M. F. ; Tao Q. ; Kang J. ; Chen Y. X. Acta Phys. -Chim. Sin. 2010, 26, 3217. |
曾涵; 廖铃文; 李明芳; 陶骞; 康婧; 陈艳霞; 物理化学学报, 2010, 26, 3217.
doi: 10.3866/PKU.WHXB20101208 |
|
19 |
Amdursky N. ; Pecht I. ; Sheves M. ; Cahen D. J. Am. Chem. Soc. 2012, 134, 18221.
doi: 10.1021/ja308953q |
20 |
Amdursky N. ; Ferber D. ; Pecht I. ; Sheves M. ; Cahen D. Phys. Chem. Chem. Phys. 2013, 15, 17142.
doi: 10.1039/C3CP52885E |
21 |
Mentovich E. ; Belgorodsky B. ; Gozin M. ; Richter S. ; Cohen H. J. Am. Chem. Soc. 2012, 134, 8468.
doi: 10.1021/ja211790u |
22 |
Beilis E. ; Horowitz Y. ; Givon A. ; Somorjai G.A. ; Cohen H. ; Richter S. J. Phys. Chem. C 2017, 121, 9579.
doi: 10.1021/acs.jpcc.7b01355 |
23 |
Wang Q. ; Xu W. ; Wu P. ; Zhang H. ; Cai C. ; Zhao B. J. Phys. Chem. B 2010, 114, 12754.
doi: 10.1021/jp106214v |
24 |
Qian Y. ; Xu X. ; Wang Q. ; Wu P. ; Zhang H. ; Cai C. Phys. Chem. Chem. Phys. 2013, 15, 16941.
doi: 10.1039/C3CP52352G |
25 |
Bera S. ; Kolay J. ; Banerjee S. ; Mukhopadhyay R. Langmuir 2017, 33, 1951.
doi: 10.1021/acs.langmuir.6b04120 |
26 |
Rakshit T. ; Mukhopadhyay R. Langmuir 2011, 27, 9681.
doi: 10.1021/la202045a |
27 |
Liang W. ; Wu C. ; Cai Z. ; Sun Y. ; Zhang H. ; Wu P. ; Cai C. Chem. Commun. 2019, 55, 2853.
doi: 10.1039/C9CC00688E |
28 | Spahr P. F. ; Edsall J. T. J. Biol. Chem. 1964, 239, 850. |
29 |
Castañeda Ocampo O. E. ; Gordiichuk P. ; Catarci S. ; Gautier D. A. ; Herrmann A. ; Chiechi R. C. J. Am. Chem. Soc. 2015, 137, 8419.
doi: 10.1021/jacs.5b01241 |
30 |
Setty Venkat A. ; Corni S. ; Felice R. D. Small 2007, 3, 1431.
doi: 10.1002/smll.200700001 |
31 |
Bujacz A. Acta Crystallogr. D 2012, 68, 1278.
doi: 10.1107/S0907444912027047 |
32 |
Rombouts I. ; Lagrain B. ; Scherf K. A. ; Lambrecht M. A. ; Koehler P. ; Delcour J. A. Sci. Rep. 2015, 5, 12210.
doi: 10.1038/srep12210 |
33 |
Seitz O. ; Vilan A. ; Cohen H. ; Chan C. ; Hwang J. ; Kahn A. A. ; Cahen D. J. Am. Chem. Soc. 2007, 129, 7494.
doi: 10.1021/ja071960p |
34 |
Chiechi R. C. ; Weiss E. A. ; Dickey M. D. ; Whitesides G. M. Angew. Chem. Int. Ed. 2008, 47, 142.
doi: 10.1002/anie.200703642 |
35 |
Adams P. A. ; Berman M. C. Biochem. J. 1980, 191, 95.
doi: 10.1042/bj1910095 |
36 |
Zunszain P. A. ; Ghuman J. ; Komatsu T. ; Tsuchida E. ; Curry S. BMC Struct. Biol. 2003, 3, 7.
doi: 10.1186/1472-6807-3-7 |
37 |
Makarska-Bialokoz M. Spectrochim. Acta Part A: Mol. Biomol. Spectro. 2018, 193, 23.
doi: 10.1016/j.saa.2017.11.063 |
38 |
Guo Y. ; Deng L. ; Li J. ; Guo S. ; Wang E. ; Dong S. ACS Nano 2011, 5, 1282.
doi: 10.1021/nn1029586 |
39 |
Xu X. ; Wu P. ; Xu W. ; Shao Q. ; An L. ; Zhang H. ; Cai C. Phys. Chem. Chem. Phys. 2012, 14, 5824.
doi: 10.1039/c2cp24121h |
40 |
Shao Q. ; Wu P. ; Xu X. ; Zhang H. ; Cai C. Phys. Chem. Chem. Phys. 2012, 14, 9076.
doi: 10.1039/c2cp40654c |
41 |
Beilis E. ; Belgorodsky B. ; Fadeev L. ; Cohen H. ; Richter S. J. Am. Chem. Soc. 2014, 136, 6151.
doi: 10.1021/ja410754t |
42 |
Varnholt B. ; Oulevey P. ; Luber S. ; Kumara C. ; Dass A. ; Burgi T. J. Phys. Chem. C 2014, 118, 9604.
doi: 10.1021/jp502453q |
43 |
Yamada T. K. ; Bischoff M. M. ; Mizoguchi T. ; van Kempen H. Surf. Sci. 2002, 516, 179.
doi: 10.1016/S0039-6028(02)02032-0 |
44 |
Yamada T. K. ; Bischoff M. M. ; Heijnen G. M. ; Mizoguchi T. ; van Kempen H. Phys. Rev. Lett. 2003, 90, 056803.
doi: 10.1103/PhysRevLett.90.056803 |
45 |
Ukraintsev V. A. Phys. Rev. B 1996, 53, 11176.
doi: 10.1103/PhysRevB.53.11176 |
[1] | 谢文,何欢,董家新,郭清莲,刘义. 桑色素与血清白蛋白相互作用热力学行为[J]. 物理化学学报, 2019, 35(7): 725 -733 . |
[2] | 郭清莲,何欢,潘凌立,刘义. BCBP与牛血清白蛋白相互作用热力学[J]. 物理化学学报, 2016, 32(6): 1383 -1390 . |
[3] | 谢湖均,刘程程,孙强,顾青,雷群芳,方文军. 季铵盐型阳离子表面活性剂与牛血清白蛋白的相互作用[J]. 物理化学学报, 2016, 32(12): 2951 -2960 . |
[4] | 史楠, 高保娇, 杨青. 刷状结构的阳离子性接枝微粒QPDMAEMA/SiO2对牛血清白蛋白的吸附特性[J]. 物理化学学报, 2014, 30(11): 2168 -2176 . |
[5] | 高晓亚, 文雯, 宋志英, 张爱平, 郝娟, 黄茜. 超声作用下稀土离子对纳米TiO2与牛血清白蛋白相互作用的影响[J]. 物理化学学报, 2012, 28(02): 470 -478 . |
[6] | 邵爽, 胡晓环, 游金宗, 雷群芳. N-烷基-N,N-二(2-羟乙基)-N-甲基溴化铵与牛血清白蛋白的相互作用[J]. 物理化学学报, 2010, 26(11): 2997 -3001 . |
[7] | 郭清莲, 李冉, 蒋风雷, 涂建成, 李林尉, 刘义. 光谱法测定伊曲康唑与牛血清和人血清白蛋白相互作用[J]. 物理化学学报, 2009, 25(10): 2147 -2154 . |
[8] | 刘保生, 赵风利, 薛春丽, 王晶, 吕运开. 荧光光谱在研究氯霉素与沙拉沙星间拮抗作用中的应用[J]. 物理化学学报, 2009, 25(09): 1861 -1866 . |
[9] | 邵爽, 邱瑾. 金属离子对齐多夫定与牛血清白蛋白结合作用的影响[J]. 物理化学学报, 2009, 25(07): 1342 -1346 . |
[10] | 王芳斌, 彭勇, 范美意, 刘又年, 黄可龙. 谷胱甘肽-二茂铁的合成及其与牛血清白蛋白的相互作用[J]. 物理化学学报, 2009, 25(06): 1125 -1130 . |
[11] | 程伶俐;赵萍;王玫;朱慧;朱融融;孙晓宇;汪世龙. 牛血清白蛋白的光损伤和光氧化机理[J]. 物理化学学报, 2009, 25(01): 25 -29 . |
[12] | 曹团武;杨季冬. 孔雀石绿与牛血清白蛋白的相互作用[J]. 物理化学学报, 2008, 24(04): 715 -719 . |
[13] | 陈代武;谢青季;蒋雪琴;姚守拙. 槲皮素与酪蛋白和牛血清白蛋白的相互作用及共存碳纳米管的影响[J]. 物理化学学报, 2008, 24(03): 379 -387 . |
[14] | 闫华;杨健国;梁华定;潘富友;赵松林;李晶晶. 肉桂酸与牛血清白蛋白相互作用及酒精的影响[J]. 物理化学学报, 2008, 24(03): 543 -546 . |
[15] | 王冬冬;孙德志;李林尉;魏新庭;张爱梅. 5-氟尿嘧啶与牛血清白蛋白的相互作用[J]. 物理化学学报, 2007, 23(10): 1627 -1630 . |
|