物理化学学报 >> 2021, Vol. 37 >> Issue (5): 2008068.doi: 10.3866/PKU.WHXB202008068
所属专题: CO2还原
收稿日期:
2020-08-22
录用日期:
2020-09-22
发布日期:
2020-09-28
通讯作者:
钟地长,鲁统部
E-mail:dczhong@email.tjut.edu.cn;lutongbu@tjut.edu.cn
作者简介:
钟地长,1981年生,天津理工大学教授,博导,2011年于中山大学获得博士学位。主要从事功能配合物的合成及其能源催化方面的研究基金资助:
Jihong Zhang, Dichang Zhong(), Tongbu Lu()
Received:
2020-08-22
Accepted:
2020-09-22
Published:
2020-09-28
Contact:
Dichang Zhong,Tongbu Lu
E-mail:dczhong@email.tjut.edu.cn;lutongbu@tjut.edu.cn
About author:
Email: lutongbu@tjut.edu.cn (T.L.); Tel.: +86-22-60214545 (T.L.)Supported by:
摘要:
利用太阳能将CO2还原成燃料或高附加值的化工原料,是解决能源危机和气候变暖的理想途径,其中的关键问题是开发高效的催化剂。近年来,非贵金属Co(Ⅱ)配合物作为分子催化剂在光催化CO2还原方面展现出良好的催化性能。本文按配体的不同种类,系统介绍Co(Ⅱ)配合物分子催化剂在光催化CO2还原方面的最新研究进展。并在此基础上,重点分析配合物分子结构对催化效率、选择性和稳定性的影响,总结构效关系。最后,针对在光催化CO2还原中存在的问题,提出了Co(Ⅱ)配合物分子催化剂的设计思路,并对Co(Ⅱ)配合物分子催化剂用于光催化CO2还原的前景进行了展望。
张继宏, 钟地长, 鲁统部. 钴(Ⅱ)基分子配合物用于光催化二氧化碳还原[J]. 物理化学学报, 2021, 37(5), 2008068. doi: 10.3866/PKU.WHXB202008068
Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2008068. doi: 10.3866/PKU.WHXB202008068
表1
Co(Ⅱ)配合物分子催化剂光催化CO2还原"
Entry | CAT | PS | SD | Solvent | Light source | Irradiation time (h) | Product (TON) | Quantum yield (%) | Selectivity (%) | Refs. |
1 | C1 (80 μmol∙L−1) | [Ru(bpy)3]2+ | AH− | H2O | daylight lamp | 18 | CO(22) | – | 22 | 32 |
2 | C2 (80 μmol∙L−1) | [Ru(bpy)3]2+ | AH− | H2O | daylight lamp | 18 | CO(9.6) | – | 32 | 32 |
3 | C3 (80 μmol∙L−1) | [Ru(bpy)3]2+ | AH− | H2O | daylight lamp | 18 | CO (< 3) | – | < 1 | 32 |
4 | C4 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | CO(10.2) HCOO− (6.7) | 15(CO) 10(HCOO−) | – | 34 |
5 | C4 (2.5 mmol∙L−1) | phenazine | TEA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | HCOO− (5) | 7(HCOO−) | > 90 | 35 |
6 | C5 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | CO(5.3) HCOO−(3.5) | – | 51.6(CO) 34.4(HCOO−) | 36 |
7 | C6 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | CO(1.0) | – | 44 | 36 |
8 | C7 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | – | – | – | 36 |
9 | C8 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | CO(4.9) HCOO−(2.5) | – | 58.5(CO) 30.4(HCOO−) | 37 |
10 | C9 (1.7 mmol∙L−1) | p-terphenyl | TEOA | CH3CN/MeOH | Hg lamp (λ > 290 nm) | 1 | CO(2.7) HCOO−(0.4) | – | 30.3(CO) 4.8(HCOO−) | 36 |
11 | C10 (50 μmol∙L−1) | fac-Ir(ppy)3 | TEA | CH3CN | LED (λ > 460 nm) | 22 | CO(270) | – | 97 | 38 |
12 | C11 (0.5 mmol∙L−1) | [Ru(phen)3]2+ | TEOA | DMF | Xe lamp, IR-cut filter | 404 | CO(8.3) | – | 31 | 39 |
13 | C12 (0.5 mmol∙L−1) | – | TEOA | DMF | Xe lamp (λ > 400 nm) | > 25 | CO(3) | – | – | 40 |
14 | C13 (0.5 mmol∙L−1) | – | TEOA | DMF | Xe lamp (λ > 400 nm) | > 25 | CO(5) | – | – | 40 |
15 | C14 (5 μmol∙L−1) | [Ru(bpy)3]2+ | BIH | CH3CN/TEOA | LED (λ = 460 nm) | 1.3 | CO(2600) | 2.8 | 98 | 41 |
16 | C14 (5 μmol∙L−1) | purpurin | BIH | DMF | LED (λ = 460 nm) | 11 | CO(790) | – | 95 | 41 |
17 | C15 (50 μmol∙L−1) | [Ru(phen)3]2+ | BIH/TEOA | CH3CN | LED (λ = 460 nm) | 60 | CO(221) HCOO−(821) | – | 75.9(CO) | 42 |
18 | C15 (50 μmol∙L−1) | [Ru(phen)3]2+ | BIH | CH3CN/PhOH | LED (λ = 460 nm) | 1 | CO(829) HCOO−(12) | – | 96(CO) | 42 |
19 | C16 (0.18 mmol∙L−1) | [Ru(bpy)3]2+ | TEA | CH3CN/TTA | Xe lamp (λ > 410 nm) | 4 | CO(3.4) HCOO−(1.4) | – | 71.4(CO) | 43 |
20 | C17 (0.18 mmol∙L−1) | [Ru(bpy)3]2+ | TEA | CH3CN/TTA | Xe lamp (λ > 410 nm) | 4 | CO(5.1) | – | 38.9(CO) | 43 |
21 | C18 (10 μmol∙L−1) | – | TEA | CH3CN | Xe lamp (λ > 320 nm) | 200 | CO+ HCOO−(300) | – | – | 44 |
22 | C19 (50 μmol∙L−1) | p-terphenyl | TEA | CH3CN | Xe lamp (λ > 320 nm) | 20 | CO(62) | – | – | 45 |
23 | C20 (40 μmol∙L−1) | p-terphenyl | TEA | CH3CN | Xe lamp (λ > 310 nm) | 6 | CO(47.5) | – | – | 46 |
24 | C21 (42 μmol∙L−1) | p-terphenyl | TEA | CH3CN | Xe lamp (λ > 310 nm) | 8 | CO(50–100) | – | – | 45 |
25 | C22 (10 μmol∙L−1) | [Ru(bpy)3]2+ | AHˉ | H2O | Xe lamp (λ > 400 nm) | 4 | CO(926) | – | 82 | 47 |
26 | C22 (5 μmol∙L−1) | CuPS | AHˉ | H2O | Xe lamp (λ > 400 nm) | 4 | CO(1085) | – | 90 | 49 |
27 | C23 (5 μmol∙L−1) | CuPS | AHˉ | H2O | Xe lamp (λ > 400 nm) | 4 | CO(2680) | – | 77 | 49 |
28 | C24 (5 μmol∙L−1) | fac-Ir(ppy)3 | TEA | CH3CN | LED (λ = 460 nm) | 70 | CO(953) | – | 85 | 50 |
29 | C25 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | CH3CN/H2O | LED (λ = 450 nm) | 60 | CO(56.9) HCOO−(64.2) | – | 18.8(CO) 21.2(HCOOˉ) | 53 |
30 | C26 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 60 | CO(368) | – | 95 | 54 |
31 | C27 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 15 | – | – | – | 54 |
32 | C28 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 15 | CO(13) | – | 65 | 54 |
33 | C29 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 15 | – | – | – | 54 |
34 | C30 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 12 | CO(56) | – | 86 | 55 |
35 | C30 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 48 | CO(470) | – | 87 | 55 |
36 | C31 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 12 | CO(102) | – | 88 | 55 |
37 | C31 (10 μmol∙L−1) | fac-Ir(ppy)3 | TEA | DMF | LED (λ = 460 nm) | 48 | CO(403) | – | 89 | 55 |
38 | C32 (2 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(1179) | 0.22 | 97 | 55 |
39 | C33 (0.05 μmol∙L−1) | [Ru(phen)3]2+ | TEA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(11600) | 97 | 60 | |
40 | C34 (0.05 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(1600) | 0.007 | 85 | 60 |
41 | C35 (0.05 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(12680) | – | 97 | 62 |
42 | C36 (0.05 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(11280) | – | 98 | 62 |
43 | C37 (0.05 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(1600) | – | 85 | 62 |
44 | C38 (2.0 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 12 | CO(790) | 0.16 | 98 | 63 |
45 | C39 (2.0 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 12 | CO(1070) | 0.22 | 98 | 63 |
46 | C40 (2.0 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 12 | CO(1330) | 0.27 | 98 | 63 |
47 | C41 (1.0 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 12 | CO(950) | 0.19 | 98 | 63 |
48 | C42 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(16896) | 0.04 | 98 | 64 |
49 | C43 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 3 | CO(7820) | 0.28 | 87 | 68 |
50 | C44 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 3 | CO(8676) | 0.31 | 83 | 68 |
51 | C45 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 3 | CO(14210) | 0.51 | 95 | 68 |
52 | C43 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 30 | CO(46335) CH4(2200) | CO(0.17) CH4(0.03) | CO(90) CH4(4) | 68 |
53 | C44 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 30 | CO(27311) CH4(1766) | CO(0.10) CH4(0.03) | CO(92) CH4(6) | 68 |
54 | C45 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | Blue LED | 30 | CO(5641) CH4(648) | CO(0.02) CH4(0.01) | CO(63) CH4(7) | 68 |
55 | C46 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(65000) | 0.15 | 98 | 69 |
56 | C47 (0.025 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(33792) | 0.15 | 98 | 70 |
57 | C47 (0.5 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O CO2/Ar = 1/9 | LED (λ = 450 nm) | 10 | CO(600) | – | 95 | 70 |
58 | C48 (0.5 μmol∙L−1) | [Ru(phen)3]2+ | TEOA | CH3CN/H2O | LED (λ = 450 nm) | 10 | CO(18656) | – | 97 | 70 |
59 | C49 (30 μmol∙L−1) | Ir(ppy)3 | BIH | DMA/TFE | LED (λ = 420 nm) | 4 | CO(58.4) COOH(55.7) | – | CO(33.2) COOH(31.7) | 71 |
1 |
Reichstein M. ; Bahn M. ; Ciais P. ; Frank D. ; Mahecha M. D. ; Seneviratne S. ; Zscheischler J. ; Beer C. ; Buchmann N. ; Frank D. Nature 2013, 500, 287.
doi: 10.1038/nature12350 |
2 |
Creutzig F. ; Agoston P. ; Minx J. ; Canadell J. ; Andrew R. ; Quéré C. ; Peters G. ; Sharifi A. ; Yamagata Y. ; Dhakal S. Nature Climate Change 2016, 6, 1054.
doi: 10.1038/nclimate3169 |
3 |
Davis S. ; Caldeira K. P. Natl. Acad. Sci. 2010, 107, 5687.
doi: 10.1073/pnas.0906974107 |
4 |
Bonin J. ; Maurin A. ; Robert M. Coord. Chem. Rev. 2017, 334, 184.
doi: 10.1016/j.ccr.2016.09.005 |
5 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2014, 43, 631.
doi: 10.1039/c3cs60323g |
6 | Yang Y. ; Zhang Y. ; Hu J. ; Wan L. Acta Phys. -Chim. Sin. 2020, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2020, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
7 | Lan B. ; Shi H. Acta Phys. -Chim. Sin. 2014, 30, 2177. |
蓝奔月; 史海峰. 物理化学学报, 2014, 30, 2177.
doi: 10.3866/PKU.WHXB201409303 |
|
8 |
Artz J. ; Mueller T. ; Thenert K. ; Kleinekorte J. ; Meys R. ; Sternberg A. ; Bardow A. ; Leitner W. Chem. Rev. 2018, 118, 434.
doi: 10.1021/acs.chemrev.7b00435 |
9 | Zhou Y. ; Han N. ; Li Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
10 | Qin Z. ; Wu J. ; Li B. ; Su T. ; Ji H. Acta Phys. -Chim. Sin. 2021, 37, 2005027. |
秦祖赠; 吴靖; 李斌; 苏通明; 纪红兵. 物理化学学报, 2021, 37, 2005027.
doi: 10.3866/PKU.WHXB202005027 |
|
11 |
Wang L. ; Zhao B. ; Wang C. ; Sun M. ; Yu Y. ; Zhang B. J. Mater. Chem. A 2020, 8, 10175.
doi: 10.1039/D0TA01256D |
12 |
Wang F. ChemSusChem 2017,, 10, 4393.
doi: 10.1002/cssc.201701385 |
13 |
Francke R. ; Schille B. ; Roemelt M. Chem. Rev. 2018, 118, 4631.
doi: 10.1021/acs.chemrev.7b00459 |
14 |
Bose P. ; Mukherjee C. ; Golder A. Inorg. Chem. Front. 2019, 6, 1721.
doi: 10.1039/c9qi00353c |
15 |
Morris A. ; Meyer G. ; Fujita E. Acc. Chem. Res. 2009, 42, 1983.
doi: 10.1021/ar9001679 |
16 |
Wang W. ; Himeda Y. ; Muckerman J. ; Manbeck G. ; Fujita E. Chem. Rev. 2015, 115, 12936.
doi: 10.1021/acs.chemrev.5b00197 |
17 |
Wang J. ; Yamauchi K. ; Huang H. ; Sun J. ; Luo Z. ; Zhong D. ; Lu T. ; Sakai K. Angew. Chem. Int. Edit. 2019, 58, 10923.
doi: 10.1002/anie.201904578 |
18 |
Liu D. ; Zhong D. ; Lu T. EnergyChem 2020,, 2, 100034.
doi: 10.1016/j.enchem.2020.100034 |
19 |
Fukuzumi S. ; Lee Y. ; Ahn H. ; Nam W. Chem. Sci. 2018, 9, 6017.
doi: 10.1039/c8sc02220h |
20 |
Takeda H. ; Cometto C. ; Ishitani O. ; Robert M. ACS Catal. 2017, 7, 70.
doi: 10.1021/acscatal.6b02181 |
21 |
Barlow J. ; Yang J. ACS Cent. Sci. 2019, 5, 580.
doi: 10.1021/acscentsci.9b00095 |
22 | Chen J. ; Du X. ; Yu T. ; Zeng Y. ; Zhang X. ; Li Y. Imag. Sci. Photochem. 2015, 05, 358. |
陈金平; 都新丰; 于天君; 曾毅; 张小辉; 李嫕. 影像科学与光化学, 2015, 05, 358.
doi: 10.7517/j.issn.1674-0475.2015.05.358 |
|
23 |
Tran P. ; Wong L. ; Barber J. ; Loo J. Energy Environ. Sci. 2012, 5, 5902.
doi: 10.1039/c2ee02849b |
24 |
Yang W. ; Wang H. ; Liu R. ; Wang J. ; Zhang C. ; Li C. ; Zhong D. ; Lu T. Angew. Chem. Int. Ed. 2020.
doi: 10.1002/anie.202011068 |
25 |
Cao L. ; Lu D. ; Zhong D. ; Lu T. Coord. Chem. Rev. 2020, 407, 213156.
doi: 10.1016/j.ccr.2019.213156 |
26 |
Deng J. ; Luo J. ; Mao Y. ; Lai S. ; Gong Y. ; Zhong D. ; Lu T. Sci. Adv. 2020, 6, eaax9976.
doi: 10.1126/sciadv.aax9976 |
27 |
Liu D. ; Ouyang T. ; Xiao R. ; Liu W. ; Zhong D. ; Xu Z. ; Lu T. ChemSusChem 2019, 12, 2166.
doi: 10.1002/cssc.201900338 |
28 |
Grills D. ; Ertem M. ; McKinnon M. ; Ngo K. ; Rochford J. Coord. Chem. Rev. 2018, 374, 173.
doi: 10.1016/j.ccr.2018.05.022 |
29 |
Benson E. ; Kubiak C. ; Sathrum A. ; Smieja J. Chem. Soc. Rev. 2009, 38, 89.
doi: 10.1039/B804323J |
30 |
Meshitsuka S. ; Ichikawa M. ; Tamaru K. J. Chem. Soc. Chem. Commun. 1974, 158
doi: 10.1039/C39740000158 |
31 |
Fisher B. ; Eisenberg R. J. Am. Chem. Soc. 1980, 102, 7361.
doi: 10.1021/ja00544a035 |
32 |
Tinnemans A. ; Koster T. ; Thewissen D. ; Mackor A. Recl. Trav. Chim. Pays-Bas. 1984, 103, 288.
doi: 10.1002/recl.19841031004 |
33 |
Sheng H. ; Frei H. J. Am. Chem. Soc. 2016, 138, 9959.
doi: 10.1021/jacs.6b05248 |
34 |
Ogata T. ; Yanagida S. ; Brunschwig B. ; Fujita E. J. Am. Chem. Soc. 1995, 117, 6708.
doi: 10.1021/ja00130a009 |
35 |
Ogata T. ; Yamamoto Y. ; Wada Y. ; Murakoshi K. ; Kusaba M. ; Nakashima N. ; Ishida A. ; Takamuku S. ; Yanagida S. J. Phys. Chem. 1995, 99, 11916.
doi: 10.1021/j100031a020 |
36 |
Matsuoka S. ; Yamamoto K. ; Ogata T. ; Kusaba M. ; Nakashima N. ; Fujita E. ; Yanagida S. J. Am. Chem. Soc. 1993, 115, 601.
doi: 10.1021/ja00055a032 |
37 |
Matsuoka S. ; Yamamoto K. ; Pac C. ; Yanagida S. Chem. Lett. 1991, 20, 2099.
doi: 10.1246/cl.1991.2099 |
38 |
Chen L. ; Guo Z. ; Wei X. ; Gallenkamp C. ; Bonin J. ; Anxolabéhère-Mallart E. ; Lau K. ; Lau T. ; Robert M. J. Am. Chem. Soc. 2015, 137, 10918.
doi: 10.1021/jacs.5b06535 |
39 |
Hirose T. ; Maeno Y. ; Himeda Y. J. Mol. Catal. A: Chem. 2003, 193, 27.
doi: 10.1016/S1381-1169(02)00478-8 |
40 |
Komatsuzaki N. ; Himeda Y. ; Hirose T. ; Sugihara H. ; Kasuga K. Bull. Chem. Soc. Jpn. 1999, 72, 725.
doi: 10.1246/bcsj.72.725 |
41 |
Guo Z. ; Cheng S. ; Cometto C. ; Anxolabéhère-Mallart E. ; Ng S. ; Ko C. ; Liu G. ; Chen L. ; Robert M. ; Lau T. J. Am. Chem. Soc. 2016, 138, 9413.
doi: 10.1021/jacs.6b06002 |
42 |
Guo Z. ; Chen G. ; Cometto C. ; Ma B. ; Zhao H. ; Groizard T. ; Chen L. ; Fan H. ; Man W. ; Yiu S. ; et al Nat. Catal. 2019, 2, 801.
doi: 10.1038/s41929-019-0331-6 |
43 |
Shimoda T. ; Morishima T. ; Kodama K. ; Hirose T. ; Polyansky D. ; Manbeck G. ; Muckerman J. ; Fujita E. Inorg. Chem. 2018, 57, 5486.
doi: 10.1021/acs.inorgchem.8b00433 |
44 |
Behar D. ; Dhanasekaran T. ; Neta P. ; Hosten C. ; Ejeh D. ; Hambright P. ; Fujita E. J. Phys. Chem. A 1998, 102, 2870.
doi: 10.1021/jp9807017 |
45 |
Dhanasekaran T. ; Grodkowski J. ; Neta P. ; Hambright P. ; Fujita E. J. Phys. Chem. A 1999, 103, 7742.
doi: 10.1021/jp991423u |
46 |
Grodkowski J. ; Neta P. ; Fujita E. ; Mahammed A. ; Simkhovich L. ; Gross Z. J. Phys. Chem. A 2002, 106, 4772.
doi: 10.1021/jp013668o |
47 |
Call A. ; Cibian M. ; Yamamoto K. ; Nakazono T. ; Yamauchi K. ; Sakai K. ACS Catal. 2019, 9, 4867.
doi: 10.1021/acscatal.8b04975 |
48 |
Zhang Y. ; Schulz M. ; Waechtler M. ; Karnahl M. ; Dietzek B. Coord. Chem. Rev. 2018, 356, 127.
doi: 10.1016/j.ccr.2017.10.016 |
49 |
Zhang X. ; Cibian M. ; Call A. ; Yamauchi K. ; Sakai K. ACS Catal. 2019, 9, 11263.
doi: 10.1021/acscatal.9b04023 |
50 |
Chan S. ; Lam T. ; Yang C. ; Yan S. ; Cheng N. Chem. Commun. 2015, 51, 7799.
doi: 10.1039/c5cc00566c |
51 |
Chan S. ; Lam T. ; Yang C. ; Lai J. ; Cao B. ; Zhou Z. ; Zhu Q. Polyhedron 2017, 125, 156.
doi: 10.1016/j.poly.2016.09.049 |
52 |
Yang C. ; Mehmood F. ; Lam T. ; Chan S. ; Wu Y. ; Yeung C. ; Guan X. ; Li K. ; Chung C. ; Zhou C. ; et al Chem. Sci. 2016, 7, 3123.
doi: 10.1039/c5sc04458h |
53 |
Zhu C. ; Zhang Y. ; Liao R. ; Xia W. ; Hu J. ; Wu J. ; Liu H. ; Wang F. Dalton Trans. 2018, 47, 13142.
doi: 10.1039/c8dt02148a |
54 |
Wang F. ; Cao B. ; To W. ; Tse C. ; Li K. ; Chang X. ; Zang C. ; Chan S. ; Che C. Catal. Sci. Technol. 2016, 6, 7408.
doi: 10.1039/C6CY01265E |
55 |
Zhu C. ; Huang Y. ; Hu J. ; Li Q. ; Tan H. ; Gui M. ; Deng S. ; Wang F. J. Photochem. Photobiol. A 2018, 355, 175.
doi: 10.1016/j.jphotochem.2017.09.056 |
56 |
Lin J. ; Qin B. ; Zhao G. J. Photochem. Photobiol. A 2018, 354, 181.
doi: 10.1016/j.jphotochem.2017.09.019 |
57 |
Chen B. ; Morlanes N. ; Adogla E. ; Takanabe K. ; Rodionov V. ACS Catal. 2016, 6, 4647.
doi: 10.1021/acscatal.6b01237 |
58 |
Ouyang T. ; Hou C. ; Wang J. ; Liu W. ; Zhong D. ; Ke Z. ; Lu T. Inorg. Chem. 2017, 56, 7307.
doi: 10.1021/acs.inorgchem.7b00566 |
59 |
Hossain A. ; Liljegren J. A. ; Powell D. ; Bowman-James K. Inorg. Chem. 2004, 43, 3751.
doi: 10.1021/ic049762b |
60 |
Liu D. ; Huang H. ; Wang J. ; Jiang L. ; Zhong D. ; Lu T. ChemCatChem 2018, 10, 3435.
doi: 10.1002/cctc.201800727 |
61 |
Xiang D. ; Magana D. ; Dyer R. J. Am. Chem. Soc. 2014, 136, 14007.
doi: 10.1021/ja5081103 |
62 |
Liu D. ; Wang H. ; Ouyang T. ; Wang J. ; Jiang L. ; Zhong D. ; Lu T. ACS Appl. Energy Mater. 2018, 1, 2452.
doi: 10.1021/acsaem.8b00673 |
63 |
Wang J. ; Huang H. ; Sun J. ; Ouyang T. ; Zhong D. ; Lu T. ChemSusChem 2018, 11, 1025.
doi: 10.1002/cssc.201702280 |
64 |
Ouyang T. ; Huang H. ; Wang J. ; Zhong D. ; Lu T. Angew. Chem. Int. Edit. 2017, 56, 738.
doi: 10.1002/anie.201610607 |
65 | Lan Z. ; Wang X. Acta Phys. -Chim. Sin. 2017, 33, 457. |
蓝志安; 王心晨. 物理化学学报, 2017, 33, 457.
doi: 10.3866/PKU.WHXB201701061 |
|
66 |
Wang J. ; Zhong D. ; Lu T. Coord. Chem. Rev. 2018, 377, 225.
doi: 10.1016/j.ccr.2018.09.003 |
67 |
Cao L. ; Huang H. ; Wang J. ; Zhong D. ; Lu T. Green Chem. 2018, 20, 798.
doi: 10.1039/c7gc03451b |
68 |
Realista S. ; Almeida J. ; Milheiro S. ; Bandeira N. ; Alves L. ; Madeira F. ; Calhorda M. ; Martinho P. Chem. Eur. J. 2019, 25, 11670.
doi: 10.1002/chem.201901806 |
69 |
Ouyang T. ; Wang H. ; Huang H. ; Wang J. ; Guo S. ; Liu W. ; Zhong D. ; Lu T. Angew. Chem. Int. Edit. 2018, 57, 16480.
doi: 10.1002/anie.201811010 |
70 |
Liu D. ; Wang H. ; Wang J. ; Zhong D. ; Jiang L. ; Lu T. Chem. Commun. 2018, 54, 11308.
doi: 10.1039/c8cc04892d |
71 |
Akai T. ; Kondo M. ; Lee S. ; Izu H. ; Enomoto T. ; Okamura M. ; Saga Y. ; Masaoka S. Dalton Trans. 2020, 49, 1384.
doi: 10.1039/C9DT04684D |
72 |
Kumar P. ; Kumar A. ; Sreedhar B. ; Sain B. ; Ray S. ; Jain S. Chem. Eur. J. 2014, 20, 6154.
doi: 10.1002/chem.201304189 |
73 |
Aoi S. ; Mase K. ; Ohkubo K. ; Fukuzumi S. Catal. Sci. Technol. 2016, 6, 4077.
doi: 10.1039/c6cy00376a |
74 |
Zhao G. ; Pang H. ; Liu G. ; Li P. ; Liu H. ; Zhang H. ; Shi L. ; Ye J. Appl. Catal. B 2017, 200, 141.
doi: 10.1016/j.apcatb.2016.06.074 |
75 |
Roy S. ; Reisner E. Angew. Chem. Int. Ed. 2019, 58, 12180.
doi: 10.1002/ange.201907082 |
76 |
Ma B. ; Chen G. ; Fave C. ; Chen L. ; Kuriki R. ; Maeda K. ; Ishitani O. ; Lau T. ; Bonin J. ; Robert M. J. Am. Chem. Soc. 2020, 142, 6188.
doi: 10.1021/jacs.9b13930 |
77 |
Pan Z. ; Niu P. ; Liu M. ; Zhang G. ; Zhu Z. ; Wang X. ChemSusChem 2020, 13, 888.
doi: 10.1002/cssc.201903172 |
78 |
Kumar A. ; Prajapati P. ; Aathira M. ; Bansiwal A. ; Boukherroub R. ; Jain S. J. Colloid Interface Sci. 2019, 543, 201.
doi: 10.1016/j.jcis.2019.02.061 |
79 |
Bi Q. ; Wang J. ; Lv J. ; Wang J. ; Zhang W. ; Lu T. ACS Catal. 2018, 8, 11815.
doi: 10.1021/acscatal.8b03457 |
80 |
Wang J. ; Liu W. ; Zhong D. ; Lu T. Coord. Chem. Rev. 2019, 378, 237.
doi: 10.1016/j.ccr.2017.12.009 |
[1] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[2] | 张珹博, 陶晓萍, 蒋文超, 郭俊雪, 张鹏飞, 李灿, 李仁贵. 微波辅助合成促进铬酸铋晶体的光生电荷分离[J]. 物理化学学报, 2024, 40(1): 2303034 - . |
[3] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[4] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[5] | 侯玉翠, 何卓森, 任树行, 吴卫泽. 均相催化剂催化氧气氧化生物质制备甲酸[J]. 物理化学学报, 2023, 39(9): 2212065 -0 . |
[6] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[7] | 王中辽, 汪静, 张金锋, 代凯. 光激发电荷在光催化氧化还原反应中的全利用[J]. 物理化学学报, 2023, 39(6): 2209037 - . |
[8] | 王吉超, 乔秀, 史维娜, 贺景, 陈军, 张万庆. 多面体状Cu2O修饰片状BiOI的S型异质结构筑及光催化水蒸气中CO2转化性能研究[J]. 物理化学学报, 2023, 39(6): 2210003 - . |
[9] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
[10] | 孙涛, 李晨曦, 鲍钰鹏, 樊君, 刘恩周. S-型MnCo2S4/g-C3N4异质结光催化产氢性能研究[J]. 物理化学学报, 2023, 39(6): 2212009 - . |
[11] | 吴新鹤, 陈郭强, 王娟, 李金懋, 王国宏. S-Scheme异质结光催化产氢研究进展[J]. 物理化学学报, 2023, 39(6): 2212016 -0 . |
[12] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[13] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[14] | 张珂瑜, 李云锋, 袁仕丹, 张洛红, 王倩. S型异质结H2O2光催化剂的研究进展[J]. 物理化学学报, 2023, 39(6): 2212010 - . |
[15] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
|