物理化学学报 >> 2022, Vol. 38 >> Issue (11): 2201039.doi: 10.3866/PKU.WHXB202201039

所属专题: 新锐科学家专刊

论文 上一篇    下一篇

聚3-己基噻吩:非富勒烯太阳能电池中的量子效率损失和电压损失

徐小云1, 吴宏波1, 梁世洁2, 唐正1,*(), 李梦阳1, 王静1, 王翔1, 闻瑾1, 周二军3,*(), 李韦伟2,*(), 马在飞1,*()   

  1. 1 东华大学材料科学与工程学院, 纤维材料改性国家重点实验室, 先进低维材料中心, 上海 201620
    2 北京化工大学材料科学与工程学院, 有机无机复合材料国家重点实验室, 软物质科学与工程高精尖创新中心, 北京 100029
    3 国家纳米科学中心, 北京 100190
  • 收稿日期:2022-01-23 录用日期:2022-02-16 发布日期:2022-02-22
  • 通讯作者: 唐正,周二军,李韦伟,马在飞 E-mail:ztang@dhu.edu.cn;zhouej@nanoctr.cn;liweiwei@iccas.ac.cn;mazaifei@dhu.edu.cn
  • 基金资助:
    中央高校基本科研业务费(2232021A09);中央高校基本科研业务费(2232021A06);国家自然科学基金(52073056);国家自然科学基金(51973031);国家自然科学基金(51933001);上海市自然科学基金(22ZR1401900);上海市自然科学基金(19ZR1401400)

Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells

Xiaoyun Xu1, Hongbo Wu1, Shijie Liang2, Zheng Tang1,*(), Mengyang Li1, Jing Wang1, Xiang Wang1, Jin Wen1, Erjun Zhou3,*(), Weiwei Li2,*(), Zaifei Ma1,*()   

  1. 1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2 Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    3 National Center for Nanoscience and Technology, Beijing 100190, China
  • Received:2022-01-23 Accepted:2022-02-16 Published:2022-02-22
  • Contact: Zheng Tang,Erjun Zhou,Weiwei Li,Zaifei Ma E-mail:ztang@dhu.edu.cn;zhouej@nanoctr.cn;liweiwei@iccas.ac.cn;mazaifei@dhu.edu.cn
  • About author:Email: mazaifei@dhu.edu.cn (Z.M.)
    Email: liweiwei@iccas.ac.cn (W.L.)
    Email: zhouej@nanoctr.cn (E.Z.)
    Email: ztang@dhu.edu.cn (Z.T.)
  • Supported by:
    the Fundamental Research Funds for the Central Universities(2232021A09);the Fundamental Research Funds for the Central Universities(2232021A06);the National Natural Science Foundation of China(52073056);the National Natural Science Foundation of China(51973031);the National Natural Science Foundation of China(51933001);the Natural Science Foundation of Shanghai(22ZR1401900);the Natural Science Foundation of Shanghai(19ZR1401400)

摘要:

聚3-己基噻吩(P3HT)以其合成工艺简单、成本低廉的优势,成为有机光伏领域中最具吸引力的电子给体材料之一。然而,目前P3HT: 非富勒烯太阳能电池的光伏性能仍然较差。在本工作中,我们证明了与P3HT: 富勒烯太阳能电池相比,较快的电荷转移态的非辐射衰减速率(Knr)是导致P3HT: 非富勒烯太阳能电池中较低的量子效率和较高的电压损失的原因。然后,我们研究了基于非富勒烯受体ZY-4Cl的太阳能电池的工作机理。研究结果表明与P3HT: 非富勒烯体系相比,P3HT: ZY-4Cl中Knr的降低改善了器件的量子效率,同时降低了电压损失。Knr降低的原因可以部分归因于电荷转移态能量的增加。此外,给体分子和受体分子之间的距离(DA间距)的增大也是Knr减少的重要原因。因此,我们得出结论:为了提高P3HT太阳能电池的性能,需进一步降低器件的Knr,这可通过增加活性层中的DA间距来实现。

关键词: 有机太阳能电池, P3HT, DA间距, 内量子效率, 电压损失

Abstract:

From the industrial perspective, poly(3-hexylthiophene) (P3HT) is one of the most attractive donor materials in organic photovoltaics. The large bandgap in P3HT makes it particularly promising for efficient indoor light harvesting, a unique advantage of organic photovoltaic (PV) devices, and this has started to gain considerable attention in the field of PV technology. In addition, the up-scalability and long material stability associated with the simple chemical structure make P3HT one of the most promising materials for the mass production of organic solar cells. However, the solar cells based on P3HT has a low power conversion efficiency (PCE), which is less than 11%, mainly due to significant voltage losses. In this study, we identified the origin of the high quantum efficiency and voltage losses in the P3HT: non-fullerene based solar cells, and we proposed a strategy to reduce the losses. More specifically, we observed that: 1) the non-radiative decay rate of the charge transfer (CT) states formed at the donor–acceptor interfaces was much higher for the P3HT: non-fullerene solar cells than that for the P3HT: fullerene solar cells, which was the main reason for the more severely limited photovoltage; 2) the origin of the high non-radiative decay rate in the P3HT: non-fullerene solar cell could be ascribed to the short packing distance between the P3HT and non-fullerene acceptor molecules at the donor–acceptor interfaces (DA distance), which is a rarely studied interfacial structural property, highly important in determining the decay rate of CT states; 3) the lower voltage loss in the state-of-the-art P3HT solar cell based on the 2, 2'-((12, 13-bis(2-butyldecyl)-3, 9-diundecyl-12, 13-dihydro-[1, 2, 5]-thiadiazolo[3, 4-e]thieno[2'', 3'': 4', 5']thieno[2', 3': 4, 5]p-yrolo[3, 2-g]thieno[2', 3': 4, 5]thieno[3, 2-b]indole-2, 10-diyl)bis(methanelylidene))bis(5, 6-dichloro-1H-indene-1, 3(2H)-dion-e) (ZY-4Cl) acceptor could be associated with the better alignment of the energy levels of the active materials and the longer DA distance, compared to those based on the commonly used acceptors. However, the DA distance was still very short, limiting the device voltage. Thus, improving the performance of the P3HT based solar cells requires a further increase in the DA distance. Our findings are expected to pave the way for breaking the performance bottleneck of the P3HT based solar cells.

Key words: Organic solar cell, P3HT, DA distance, Internal quantum efficiency, Voltage loss