物理化学学报 >> 2022, Vol. 38 >> Issue (11): 2206020.doi: 10.3866/PKU.WHXB202206020
所属专题: 新锐科学家专刊
收稿日期:
2022-06-14
录用日期:
2022-07-12
发布日期:
2022-07-20
通讯作者:
张志成
E-mail:zczhang19@tju.edu.cn
基金资助:
Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang()
Received:
2022-06-14
Accepted:
2022-07-12
Published:
2022-07-20
Contact:
Zhicheng Zhang
E-mail:zczhang19@tju.edu.cn
About author:
Zhicheng Zhang, Email: zczhang19@tju.edu.cn; Tel.: +86-15822798044Supported by:
摘要:
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。
石永霞, 侯曼, 李俊俊, 李丽, 张志成. 铜基串联催化剂电催化CO2还原的研究进展[J]. 物理化学学报, 2022, 38(11), 2206020. doi: 10.3866/PKU.WHXB202206020
Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2206020. doi: 10.3866/PKU.WHXB202206020
Fig 3
(a) Top view of the calculation model (orange: Cu atoms; blue: top layer Ag or Au atoms; light blue: bottom layer Ag or Au atoms), the numbers represent the position of the binding sites; (b) binding energy for CO on Ag-Cu surface (blue) and Au-Cu surface (orange), hollow bullets indicate the sites nonadjacent to Cu surface; (c) kinetics and free energy diagrams of all possible pathways for the reduction of CO to C1 products on the Ag-Cu surface; (d, e) studies of CO adsorption on Cu, bare Ag and Ag-Cu thin films by Operando ATR-SEIRAS 102. Adapted from Springer Nature 102."
Fig 4
(a) Mechanism of electrochemical CO2RR to C2H5OH over CuxZn 111; (b) scheme of the Cu-Ag tandem catalysts for high-rate electrochemical CO2RR and C2+ products formation; (c) partial current density towards C2+ products on Cu500Ag1000, Cu500, and Ag1000 catalysts 117. Adapted from American Chemical Society 111 and Elsevier 117, respectively."
Fig 5
(a) CO2 reduction and CO production rates as a function of the potential; (b) reduction rates of CO2 to C1 and C2+ products on Cu, Au, and Au/Cu electrodes 125; (c) Ag/Cu interface for relay electrochemical CO2RR to C2H4 126; (d) FE of C2H4 over different Ag/Cu catalysts at ?1.1 V vs. RHE; (e) XPS spectra of different Ag/Cu catalysts 127; (f) schematic diagram of the cascade process of CO2 → CO → C2+ on the tandem electrode of the layered structure 133; (g) eelectrochemical CO2RR on oxide-derived Ag, Cu, Cu on Ag, and Ag on Cu foam catalysts. Black arrows indicate mass transport of CO2 from the solution bulk; grey arrows indicate mass transport CO; red arrows indicate electrochemical reaction 134; (h) schematic illustration of electrochemical CO2RR over Cu-Ag tandem catalysts 139; (i) schematic illustration of a plausible CO2RR mechanism on Ag65-Cu35 JNS-100 140. Adapted from Springer Nature 125, American Chemical Society 126, 127, 139, Elsevier 133 and John Wiley and Sons 134, 140, respectively."
Fig 6
(a) Schematic diagram of selective growth process of Au NBP-Cu heterojunction; (b) optimal FE of C2 over different catalysts 142; (c–h) HAADF-STEM images of (c) Au1Ag1Cu1 NSs, (d) Au1Ag1Cu5 NSs, (e) Au1Ag2Cu1 NSs, (f) Au1Ag2Cu5 NSs, (g) Au1Ag3Cu1 NSs, (h) Au1Ag3Cu5 NSs, and corresponding EDX elemental maps of Au (blue), Ag (green), and Cu (pink); (i) FE of the CO2RR products over Au1Ag1Cu5 NSs at a potential range from ?0.7 to ?1.3 V vs. RHE, Orange, H2; Green, CO; Purple, HCOOH; Yellow, C2H5OH; Blue, CH3COOH; (j) schematic illustration of the tandem mechanism for electrochemical CO2RR on asymmetric AuAgCu NSs 143. Adapted from John Wiley and Sons 142 and Springer Nature 143, respectively."
Fig 7
(a) EDS elemental mappings images for Cu@Ag-2; (b) FE of C2H4 over different Cu@Ag structures; (c) schematic illustration of tandem catalysis for electrochemical CO2RR on Cu/Ag core-shell structure 147; (d) schematic illustration of tandem catalysis for electrochemical CO2RR in the cavity of Au@Cu2O; (e) FE of different products over different catalysts under a range of potentials 148. Adapted from John Wiley and Sons 147 and Royal Society of Chemistry 148, respectively."
Fig 8
(a) Illustration of the preparation of Cu(111)@Cu-THQ via electro-reduction; (b) the energy barriers for CO2RR to *CO and *CHO intermediates. Red line indicates on CuO4 sites and blue line indicates on Cu(111) sites; (c) corresponding energy barriers for CORR to C2H4 over pure Cu(111) lattice facets on Cu(111)@Cu-THQ 160; (d) schematic illustration of the preparation of PTF (Ni)/Cu with well-dispersed Cu sites from Ni-TPPCN; (e) FE of C2H4 and CH4 over PTF (Ni)/Cu and PTF/Cu catalysts at a range of potentials; (f) free energies for the formation of CH4 and C2H4 of the rate-determined step at U = 0 V 161. Adapted from Royal Society of Chemistry 160 and John Wiley and Sons 161, respectively."
Fig 9
(a) The formation rate for C2H4 as a function of time under different feeding modes; (b) schematic illustration of tandem catalysis for electrochemical CO2RR on CuOx-NiNC catalyst. Grey, C; Blue, N; Yellow, Ni 177; (c) schematic illustration of Cu particles/N rich C formation during calcination; (d) FE of different products and current density over Cu30/N-CNF, Cu50/N-CNF, and Cu50/CNF catalysts under a range of potentials 178; (e) the mechanism for the production of CO on Cu-S1N3/Cux via electrochemical CO2RR, Orange, Cu; Yellow, S; Blue, N; Red, O; Gray, C; light blue, H 180. Adapted from Springer Nature 177, Royal Society of Chemistry 178 and John Wiley and Sons 180, respectively."
Fig 10
(a) HR-TEM images of Cu0@PIL@CuI-5. 5 refers to the molar percentage of CuCl to Cu NPs for the synthesis. Yellow, Cu2O; Orange, Cu; (b) CO2RR performance of Cu0@PIL@CuI-5 under different cathodic potentials; (c, d) energy diagrams of C-C coupling on Cu0-111 and Cu0-111-PIL, respectively 184. Adapted from John Wiley and Sons 184."
Table 1
Summary of some recently reported Cu-based tandem catalysts for electrochemical CO2RR."
Cu-based tandem catalysts | Method | Product | FE (%) | Potential (V vs. RHE) | jpartial/ (mA?cm?2) | Electrolytic cell | Electrolyte | Ref. | |
Metallic alloys | Cu4Zn | Electrodeposition | C2H5OH | 29.1 | ?10.5 | ?8.2 | H-cell | 0.1 mol?L?1 KHCO3 | |
Cu500Ag1000 | Physical mixing | C2+ products | – | ?0.7 | 160 | Flow cell | 1 mol?L?1 KOH | ||
Metallic heterojunction | Au/Cu | Physical vapour deposition | C2+ alcohols | – | – | – | H-cell | 0.1 mol?L-1 KHCO3 | |
Ag/Cu | Electroreduction | C2H4 | 42 | ?1.1 | 2.31 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Ag1-Cu1.1 | Seed-mediated g rowth method | C2H4 | ~40 | ?1.1 | – | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu/Au | Galvanic replacement | multi-carbon alkenes and alcohols | ~70 | ?10.5 | ~30 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu1.0/ZnO0.2 | Sequential air brush method | C2H4 | 49 | ?0.73 | ?292 | Flow cell | 1 mol?L?1 KOH | ||
Cu on Ag | Electrodeposition | C2H5OH C3H7OH | – | – | – | H-cell | 0.1 mol?L?1 NaHCO3 0.5 mol?L?1 NaClO4 | ||
Cuoh-Ag | Physical mixing | C2H5OH | 23.1 | ?1.4 | 2.5 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Ag65-Cu35 | Seed-mediated growth method | C2H4 | 54 | ?1.2 | ~?2 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Au-Cu | Seed-mediated growth Method | C2H4 C2H6 | 46.4 | ?1.0 | ~?2.25 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Au1Ag1Cu5 | Seed-mediated growth Method | C2H5OH | 37.5 | ?0.8 | ~?0.6 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Metallic core-shell structures | Cu@Ag-2 | Two-step reduction method | C2H4 | 32.2 | ?1.1 | 9.0 | Flow cell | 1 mol?L?1 KOH | |
Au@Cu2O yolk-shell | Hydrazine hydration reduction method | C2H5OH | 52.3 | ?0.3 | – | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu-based framework materials | Cu(111)@Cu-THQ | Electrochemical Reduction | C2H4 | 44.2 ± 3.4% | ?1.2 | – | H-cell | 0.1 mol?L?1 KHCO3 | |
PTF(Ni)/Cu | Reduction | C2H4 | 57.3 | ?1.1 | 3.1 | H-cell | 0.1 mol?L?1 KHCO3 and 0.1 mol?L?1 KCl | ||
Cu-based carbon materials | CuOx-NiNC | Wet chemical method | C2H4 | – | ?0.9 | – | H-cell | 0.1 mol?L?1 KHCO3 | |
Cu/N-CNF | One-pot synthesis method | C2H4 | 62 | ?0.57 | 373 | Flow cell | 5 mol?L?1 KOH | ||
Cu1.96S/Cu-NCNF | Electrospinning and calcination method | CO | 80.2 | ?0.68 | ~3 | H-cell | 0.5 mol?L?1 KHCO3 | ||
Cu-S1N3/Cux | High temperature calcination pyrolysis | CO | 100 | ?0.65 | ~4 | H-cell | 0.1 mol?L?1 KHCO3 | ||
Cu-Based polymer-modified materials | Cu0@PIL@CuI | Two-step procedure | C2+ products | 76.1 | ?0.85 | 304.2 | Flow cell | 1 mol?L?1 KOH |
1 |
MikkelsenM.;JørgensenM.;KrebsF. C.Energy Environ. Sci.2010,3,43.
doi: 10.1039/B912904A |
2 |
SpinnerN. S.;VegaJ. A.;MustainW. E.Catal. Sci. Technol.2012,2,19.
doi: 10.1039/C1CY00314C |
3 |
ZhuD.;LiuJ.;QiaoS.Adv. Mater.2016,28,3423.
doi: 10.1002/adma.201504766 |
4 |
PierrehumbertR. T.Am. Inst. Phys.2011,1401,232.
doi: 10.1063/1.3653855 |
5 |
LacisA. A.;SchmidtG. A.;RindD.;RuedyR. A.Science2010,330,356.
doi: 10.1126/science.119065 |
6 |
MöllerF.J. Geophys. Res1963,68,3877.
doi: 10.1029/JZ068i013p03877 |
7 |
CanadellJ. G.;QuéréC. L.;RaupachM. R.;FieldC. B.;BuitenhuisE. T.;CiaisP.;ConwayT. J.;GillettN. P.;HoughtonR. A.;MarlandG.Proc. Natl. Acad. Sci. U.S.A.2007,104,18866.
doi: 10.1073/pnas.0702737104 |
8 |
MyersS. S.;ZanobettiA.;KloogI.;HuybersP.;LeakeyA. D. B.;BloomA. J.;CarlisleE.;DietterichL. H.;FitzgeraldG.;HasegawaT.;et alNature2014,510,139.
doi: 10.1038/nature13179 |
9 |
PearsonP. N.;PalmerM. R.Nature2000,406,695.
doi: 10.1038/35021000 |
10 |
SchimelD.;StephensB. B.;FisherJ. B.Proc. Natl. Acad. Sci. U.S.A.2015,112,436.
doi: 10.1073/pnas.1407302112 |
11 |
RaupachM. R.;MarlandG.;CiaisP.;QuéréC. L.;CanadellJ. G.;KlepperG.;FieldC. B.Proc. Natl. Acad. Sci. U.S.A.2007,104,10288.
doi: 10.1073/pnas.0700609104 |
12 |
GaoS.;SunZ. T.;LiuW.;JiaoX. C.;ZuX. L.;HuQ. T.;SunY. F.;YaoT.;ZhangW. H.;WeiS. Q.;XieY.Nat. Commun.2017,8,14503.
doi: 10.1038/ncomms14503 |
13 |
QiaoJ. L.;LiuY. Y.;HongF.;ZhangJ.J. Chem. Soc. Rev.2014,43,631.
doi: 10.1039/C3CS60323G |
14 |
ArakawaH.;ArestaM.;ArmorJ. N.;BarteauM. A.;BeckmanE. J.;BellA. T.;BercawJ. E.;CreutzC.;DinjusE.;DixonD. A.Chem. Rev.2001,101,953.
doi: 10.1021/cr000018s |
15 |
WhippleD. T.;KenisP. J. A.J. Phys. Chem. Lett.2010,1,3451.
doi: 10.1021/jz1012627 |
16 |
SehZ. W.;KibsgaardJ.;DickensC. F.;ChorkendorffI.;NorskovJ. K.;JaramilloT. F.Science2017,355,eaad4998.
doi: 10.1126/science.aad4998 |
17 |
MontoyaJ. H.;SeitzL. C.;ChakthranontP.;VojvodicA.;JaramilloT. F.;NørskovJ. K.Nat. Mater.2017,16,70.
doi: 10.1038/nmat4778 |
18 |
AppelA. M.;BercawJ. E.;BocarslyA. B.;DobbekH.;DuBoisD. L.;DupuisM.;FerryJ. G.;FujitaE.;HilleR.;KenisP. J. A.;et alChem. Rev.2013,113,6621.
doi: 10.1021/cr300463y |
19 |
GattrellM.;GuptaN.;CoA.Energy Convers. Manage.2007,48,1255.
doi: 10.1016/j.enconman.2006.09.019 |
20 |
CostentinC.;RobertM.;SaveantJ.-M.Chem. Soc. Rev.2013,42,2423.
doi: 10.1039/C2CS35360A |
21 |
HoriY.;MurataA.;TakahashiR.J. Chem. Soc. Faraday Trans. 11989,85,2309.
doi: 10.1039/f19898502309 |
22 |
GarzaA. J.;BellA. T.;Head-GordonM.ACS Catal.2018,8,1490.
doi: 10.1021/acscatal.7b03477 |
23 |
MaM.;DjanashviliK.;SmithW. A.Angew. Chem. Int. Ed.2016,55,6680.
doi: 10.1002/anie.201601282 |
24 |
HoriY.;TakahashiI.;KogaO.;HoshiN.J. Phys. Chem. B2002,106,15.
doi: 10.1021/jp013478d |
25 |
SchoutenK. J. P.;KwonY.;van der HamC. J. M.;QinZ.;KoperM. T. M.Chem. Sci.2011,2,1902.
doi: 10.1039/C1SC00277E |
26 |
TakahashiI.;KogaO.;HoshiN.;HoriY.J. Electroanal. Chem.2002,533,135.
doi: 10.1016/S0022-0728(02)01081-1 |
27 |
HahnC.;HatsukadeT.;KimY.-G.;VailionisArturas;BaricuatroJ. H.;HigginsD. C.;NitopiS. A.;SoriagaM. P.;JaramilloT. F.Proc. Natl. Acad. Sci. U.S.A.2017,114,5918.
doi: 10.1073/pnas.1618935114 |
28 |
YuanJ.;ZhangJ. J.;YangM. P.;MengW. J.;WangH.;LuJ. X.Catalysts2018,8,171.
doi: 10.3390/catal8040171 |
29 |
ZhuangT. T.;PangY. J.;LiangZ. Q.;WangZ. Y.;LiY.;TanC. S.;LiJ.;DinhC. T.;De LunaP.;HsiehP. L.Nat. Catal.2018,1,946.
doi: 10.1038/s41929-018-0168-4 |
30 |
DuttaA.;RahamanM.;LuediN. C.;MohosM.;BroekmannP.ACS Catal.2016,6,3804.
doi: 10.1021/acscatal.6b00770 |
31 |
PangY. J.;BurdynyT.;DinhC. T.;KibriaM. G.;FanJ. Z.;LiuM.;SargentE. H.;SintonD.Green Chem.2017,19,4023.
doi: 10.1039/C7GC01677H |
32 |
LoiudiceA.;LobaccaroP.;KamaliE. A.;ThaoT.;HuangB. H.;AgerJ. W.;BuonsantiR.Angew. Chem. Int. Ed.2016,55,5789.
doi: 10.1002/anie.201601582 |
33 |
IyengarP.;HuangJ. F.;De GregorioG. L.;GadiyarC.;BuonsantiR.Chem. Commun.2019,55,8796.
doi: 10.1039/C9CC02522G |
34 |
MistryH.;ReskeR.;ZengZ. H.;ZhaoZ. J.;GreeleyJ.;StrasserP.;CuenyaB. R.J. Am. Chem. Soc.2014,136,16473.
doi: 10.1021/ja508879j |
35 |
GaoD. F.;ZhouH.;WangJ.;MiaoS.;YangF.;WangG. X.;WangJ. G.;BaoX. H.J. Am. Chem. Soc.2015,137,4288.
doi: 10.1021/jacs.5b00046 |
36 |
ReskeR.;MistryH.;BehafaridF.;CuenyaB. R.;StrasserP.J. Am. Chem. Soc.2014,136,6978.
doi: 10.1021/ja500328k |
37 |
MistryH.;VarelaA. S.;BonifacioC. S.;ZegkinoglouI.;SinevI.;ChoiY.-W.;KisslingerK.;StachE. A.;YangJ. C.;StrasserP.;et alNat. Commun.2016,7,12123.
doi: 10.1038/ncomms12123 |
38 |
XiaoH.;Goddard ⅢW. A.;ChengT.;LiuY. Y.Proc. Natl. Acad. Sci. U.S.A.2017,114,6685.
doi: 10.1073/pnas.1702405114 |
39 |
ZhangL. Y.;YangS.;LaiY. K.;LiuH.;FanY. A.;LiuC.;WangH. Y.;ChaiL. Y.Appl. Catal. B2020,265,118556.
doi: 10.1016/j.apcatb.2019.118556 |
40 |
YangS.;LiuZ. L.;YanX.;LiuC.;ZhangZ. Y.;LiuH.;ChaiL. Y.Energy Fuels2019,33,11380.
doi: 10.1021/acs.energyfuels.9b02376 |
41 |
MudiyanselageK.;LuoS.;KimH. Y.;YangX. F.;BaberA. E.;HoffmannF. M.;SenanayakeS.;RodriguezJ. A.;ChenJ. G.;LiuP.;et alCatal. Today2016,263,4.
doi: 10.1016/j.cattod.2015.08.025 |
42 |
YinZ. Y.;YuC.;ZhaoZ. L.;GuoX. F.;ShenM.Q.;LiN.;MuzzioM.;LiJ. R.;LiuHu.;LinH. H.;et alNano Lett.2019,19,8658.
doi: 10.1021/acs.nanolett.9b03324 |
43 |
BuckleyA. K.;LeeM.;ChengT.;KazantsevR. V.;LarsonD. M.;Goddard ⅢW. A.;TosteF. D.;TomaF. M.J. Am. Chem. Soc.2019,141,7355.
doi: 10.1021/jacs.8b13655 |
44 |
HoangT. T. H.;MaS.;GoldJ. I.;KenisP. J. A.;GewirthA. A.ACS Catal.2017,7,3313.
doi: 10.1021/acscatal.6b03613 |
45 |
HanZ. J.;KortleverR.;ChenH.-Y.;PetersJ. C.;AgapieT.ACS Cent. Sci.2017,3,853.
doi: 10.1021/acscentsci.7b00180 |
46 |
ClarkE. L.;HahnC.;JaramilloT. F.;BellA. T.J. Am. Chem. Soc.2017,139,15848.
doi: 10.1021/jacs.7b08607 |
47 |
ZhouY. S.;CheF. L.;LiuM.;ZouC. Q.;LiangZ. Q.;De LunaP.;YuanH. F.;LiJ.;WangZ. Q.;XieH. P.;et alNat. Chem.2018,10,974.
doi: 10.1038/s41557-018-0092-x |
48 |
LiC. W.;KananM. W.J. Am. Chem. Soc.2012,134,7231.
doi: 10.1021/ja3010978 |
49 |
WangX.;WangZ. Y.;ZhuangT.-T.;DinhC.-T.;LiJ.;NamD.-H.;LiF. W.;HuangC.-W.;TanC.-S.;ChenZ. T.;et alNat Commun.2019,10,5186.
doi: 10.1038/s41467-019-13190-6 |
50 |
LumY.;AgerJ. W.Angew. Chem. Int. Ed.2018,57,551.
doi: 10.1002/anie.201710590 |
51 |
Verdaguer-CasadevallA.;LiC. W.;JohanssonT. P.;ScottS. B.;McKeownJ. T.;KumarM.;StephensI. E. L.;KananM. W.;ChorkendorffI.J. Am. Chem. Soc.2015,137,9808.
doi: 10.1021/jacs.5b06227 |
52 |
MarianoR. G.;McKelveyK.;WhiteH. S.;KananM. W.Science2017,358,1187.
doi: 10.1126/science.aao3691 |
53 |
GuZ. X.;YangN.;HanP.;KuangM.;MeiB. B.;JiangZ.;ZhongJ.;LiL.;ZhengG. F.Small Methods2019,3,1800449.
doi: 10.1002/smtd.201800449 |
54 |
ChangX. X.;WangT.;ZhaoZ. J.;YangP. P.;GreeleyJ.;MuR. T.;ZhangG.;GongZ. M.;LuoZ. B.;ChenJ.;et alAngew. Chem. Int. Ed.2018,57,15415.
doi: 10.1002/anie.201805256 |
55 |
BaiS. X.;ShaoQ.;WangP. T.;DaiQ. G.;WangX. Y.;HuangX. Q.J. Am. Chem. Soc.2017,139,6827.
doi: 10.1021/jacs.7b03101 |
56 |
HuangJ. F.;MensiM.;OveisiE.;MantellaV.;BuonsantiR.J. Am. Chem. Soc.2019,141,2490.
doi: 10.11/acscatal.9b081 |
57 |
VarandiliS. B.;HuangJ. F.;OveisiE.;De GregorioG. L.;MensiM.;StrachM.;VavraJ.;GadiyarC.;BhowmikA.;BuonsantiR.ACS Catal.2019,9,5035.
doi: 10.1021/acscatal.9b00010 |
58 |
KuhlK. P.;CaveE. R.;AbramD. N.;JaramilloT. F.Energy Environ. Sci.2012,5,7050.
doi: 10.1039/C2EE21234J |
59 |
WangN.;MiaoR. K.;LeeG.;VomieroA.;SintonD.;IpA. H.;LiangH. Y.;SargentE. H.SmartMat.2021,2,12.
doi: 10.1002/smm2.1018 |
60 |
JhongH. R. M.;MaS. C.;KenisP. J.Curr. Opin. Chem. Eng.2013,2,191.
doi: 10.1016/j.coche.2013.03.005 |
61 |
RossM. B.;De LunaP.;LiY. F.;DinhC.-T.;KimD.;YangP. D.;SargentE. H.Nat. Catal.2019,2,648.
doi: 10.1038/s41929-019-0306-7 |
62 |
NitopiS.;BertheussenE.;ScottS. B.;LiuX. Y.;EngstfeldA. K.;HorchS.;SegerB.;StephensI. E. L.;ChanK.;HahnC.;et alChem. Rev.2019,119,7610.
doi: 10.1021/acs.chemrev.8b00705 |
63 |
ZhuY. T.;CuiX. Y.;LiuH. L.;GuoZ. G.;DangY. F.;FanZ. X.;ZhangZ. C.;HuW. P.Nano Res.2021,14,4471.
doi: 10.1007/s12274-021-3448-2 |
64 |
LiF. W.;LiY. C.;WangZ. Y.;LiJ.;NamD.-H.;LumY.;LuoM. C.;WangX.;OzdenA.;HungS.-F.;et alNat. Catal.2020,3,75.
doi: 10.1038/s41929-019-0383-7 |
65 |
WangN.;YaoK. L.;VomieroA.;WangY. H.;LiangH. Y.SmartMat.2021,2,423.
doi: 10.1002/smm2.1048 |
66 |
BaggerA.;JuW.;VarelaA. S.;StrasserP.;RossmeislJ.ChemPhysChem2017,18,3266.
doi: 10.1002/cphc.201700736 |
67 |
LiC. W.;CistonJ.;KananM. W.Nature2014,508,504.
doi: 10.1038/nature13249 |
68 |
GaoJ.;ZhangH.;GuoX. Y.;LuoJ. S.;ZakeeruddinS. M.;RenD.;GrätzelM.J. Am. Chem. Soc.2019,141,18704.
doi: 10.1021/jacs.9b07415 |
69 |
JagadeesanD.Appl. Catal. A2016,511,59.
doi: 10.1016/j.apcata.2015.11.033 |
70 |
HuangY. B.;LiangJ.;WangX. S.;CaoR.Chem. Soc. Rev.2017,46,126.
doi: 10.1039/C6CS00250A |
71 |
FoggD. E.;dos SantosE. N.Coord. Chem. Rev.2004,248,2365.
doi: 10.1016/j.ccr.2004.05.012 |
72 |
MataJ. A.;HahnF. E.;PerisE.Chem. Sci.2014,5,1723.
doi: 10.1039/c3sc53126k |
73 |
ZhouJ.Chem. Asian J.2010,5,422.
doi: 10.1002/asia.200900458 |
74 |
CampJ. E.Eur. J. Org. Chem.2017,3,425.
doi: 10.1002/ejoc.201600803 |
75 |
WasilkeJ. C.;ObreyS. J.;BakerR. T.;BazanG. C.Chem. Rev.2005,105,1001.
doi: 10.1021/cr020018n |
76 |
ShindohN.;TakemotoY.;TakasuK.Chem. Eur. J.2009,15,12168.
doi: 10.1002/chem.200901486 |
77 |
HoriY.;TakahashiR.;YoshinamiY.;MurataA.J. Phys. Chem. B1997,101,7075.
doi: 10.1021/jp970284i |
78 |
WangL.;NitopiS. A.;BertheussenE.;OrazovM.;Morales-GuioC. G.;LiuX. Y.;HigginsD. C.;ChanK.;NørskovJ. K.;HahnC.;et alACS Catal.2018,8,7445.
doi: 10.1021/acscatal.8b01200 |
79 |
LiX. D.;WangS. M.;LiL.;SunY. F.;XieY. J.Am. Chem. Soc2020,142,9567.
doi: 10.1021/jacs.0c02973 |
80 |
ZhangY.;GuoS. X.;ZhangX. L.;BondA. M.;ZhangJ.Nano Today2020,31,100835.
doi: 10.1016/j.nantod.2019.100835 |
81 |
WolduA. R.;HuangZ. L.;ZhaoP. X.;HuL. S.;AstrucD.Coord. Chem. Rev.2022,454,214340.
doi: 10.1016/j.ccr.2021.214340 |
82 |
MaW. C.;HeX. Y.;WangW.;XieS. J.;ZhangQ. H.;WangY.Chem. Soc. Rev.2021,50,12897.
doi: 10.1039/D1CS00535A |
83 |
KasR.;KortleverR.;YılmazH.;KoperM. T. M.;MulG.ChemElectroChem2015,2,354.
doi: 10.1002/celc.201402373 |
84 |
BirdjaY. Y.;Pérez-GallentE.;FigueiredoM. C.;GöttleA. J.;Calle-VallejoF.;KoperM. T. M.Nat. Energy2019,4,732.
doi: 10.1038/s41560-019-0450-y |
85 |
HoriY.;WakebeH.;TsukamotoT.;KogaO.Electrochim. Acta1994,39,1833.
doi: 10.1016/0013-4686(94)85172-7 |
86 |
KortleverR.;PetersI.;KoperS.;KoperM. T. M.ACS Catal.2015,5,3916.
doi: 10.1021/acscatal.5b00602 |
87 |
WuttigA.;YaguchiM.;MotobayashiK.;OsawaM.;SurendranathY.Proc. Natl. Acad. Sci. U.S.A.2016,113,E4585.
doi: 10.1073/pnas.1602984113 |
88 |
SchoutenK. J. P.;QinZ. S.;GallentE. P.;KoperM. T. M.J. Am. Chem. Soc.2012,134,9864.
doi: 10.1021/ja302668n |
89 |
GoodpasterJ. D.;BellA. T.;Head-GordonM.J. Phys. Chem. Lett.2016,7,1471.
doi: 10.1021/acs.jpclett.6b00358 |
90 |
LiJ. J.;ZhangZ. C.Rare Met.2022,41,723.
doi: 10.1007/s12598-021-01862-6 |
91 |
Calle-VallejoF.;KoperM. T. M.Angew. Chem. Int. Ed.2013,52,7282.
doi: 10.1002/ange.201301470 |
92 |
HanselmanS.;KoperM. T. M.;Calle-VallejoF.ACS Energy Lett.2018,3,1062.
doi: 10.1021/acsenergylett.8b00326 |
93 |
Ledezma-YanezI.;GallentE. P.;KoperM. T. M.;Calle-VallejoF.Catal. Today2016,262,90.
doi: 10.1016/j.cattod.2015.09.029 |
94 |
RenD.;WongN. T.;HandokoA. D.;HuangY.;YeoB. S.J. Phys. Chem. Lett.2016,7,20.
doi: 10.1021/acs.jpclett.5b02554 |
95 |
ZhangH. C.;LiJ.;ChengM. J.;LuQ.ACS Catal.2018,9,49.
doi: 10.1021/acscatal.8b03780 |
96 |
HoriY.;MurataA.;TakahashiR.;SuzukiS.J. Am. Chem. Soc.1987,109,5022.
doi: 10.1021/ja00250a044 |
97 |
LiJ.;ChangK.;ZhangH. C.;HeM.;GoddardW. A.;ChenJ. G.;ChengM. J.;LuQ.ACS Catal.2019,9,4709.
doi: 10.1021/acscatal.9b00099 |
98 |
HatsukadeT.;KuhlK. P.;CaveE. R.;AbramD. N.;JaramilloT. F.Phys. Chem. Chem. Phys.2014,16,13814.
doi: 10.1039/c4cp00692e |
99 |
RosenJ.;HutchingsG. S.;LuQ.;RiveraS.;ZhouY.;VlachosD. G.;JiaoF.ACS Catal.2015,5,4293.
doi: 10.1021/acscatal.5b00840 |
100 |
PetersonA. A.;Abild-PedersenF.;StudtF.;RossmeislJ.;NørskovJ. K.Energy Environ. Sci.2010,3,1311.
doi: 10.1039/c0ee00071j |
101 |
PetersonA. A.;NørskovJ. K.J. Phys. Chem. Lett.2012,3,251.
doi: 10.1021/jz201461p |
102 |
ZhangH. C.;ChangX. X.;ChenJ. G.;Goddard;W. A.;XuB. J.;ChengM. J.;LuQ.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11292-9 |
103 |
LeeS.;ParkG.;LeeJ.ACS Catal.2017,7,8594.
doi: 10.1021/acscatal.7b02822 |
104 |
GurudayalG.;BullockJ.;SrankoD. F.;TowleC. M.;LumY.;HettickM.;ScottM. C.;JaveyA.;AgerJ.Energy Environ. Sci.2017,10,2222.
doi: 10.1039/c7ee01764b |
105 |
ChangZ. Y.;HuoS. J.;ZhangW.;FangJ. H.;WangH. L.J. Phys. Chem. C2017,121,11368.
doi: 10.1021/acs.jpcc.7b01586 |
106 |
HoangT. T. H.;VermaS.;MaS.;FisterT. T.;TimoshenkoJ.;FrenkelA. I.;KenisP. J. A.;GewirthA. A.J. Am. Chem. Soc.2018,140,5791.
doi: 10.1021/jacs.8b01868 |
107 |
RenD.;GaoJ.;PanL. F.;WangZ. W.;LuoJ. S.;ZakeeruddinS. M.;HagfeldtA.;GrätzelM.Angew. Chem. Int. Ed.2019,58,15036.
doi: 10.1002/anie.201909610 |
108 |
LiJ. J.;ZhangZ. C.;HuW. P.Green Energy Environ.2021,
doi: 10.1016/j.gee.2021.11.004 |
109 |
WangY. H.;JiangW. J.;YaoW.;LiuZ. L.;LiuZ.;YangY.;GaoL. Z.Rare Met.2021,40,2327.
doi: 10.1007/s12598-021-01728-x |
110 |
Calle-VallejoF.;KoperM. T. M.Angew. Chem. Int. Ed.2013,52,7282.
doi: 10.1002/anie.201301470 |
111 |
RenD.;AngB. S.;YeoB. S.ACS Catal.2016,6,8239.
doi: 10.1021/acscatal.6b02162 |
112 |
LiJ.;ChenG. X.;ZhuY. Y.;LiangZ.;PeiA.;WuC. L.;WangH. X.;LeeH. R.;LiuK.;ChuS.Nat. Catal.2018,1,592.
doi: 10.1038/s41929-018-0108-3 |
113 |
DinhC.-T.;BurdynyT.;KibriaM. G.;SeifitokaldaniA.;GabardoC. M.;García de ArquerF. P.;KianiA.;EdwardsJ. P.;De LunaP.;BushuyevO. S.;et alScience2018,360,78.
doi: 10.1126/science.aas9100 |
114 |
NesbittN. T.;BurdynyT.;SimonsonH.;SalvatoreD.;BohraD.;KasR.;SmithW. A.ACS Catal.2020,10,14093.
doi: 10.1021/acscatal.0c03319 |
115 |
SaY. J.;LeeC. W.;LeeS. Y.;NaJ.;LeeU.;HwangY. J.Chem. Soc. Rev.2020,49,6632.
doi: 10.1039/D0CS00030B |
116 |
LeesE. W.;MowbrayB. A.;ParlaneF. G.;BerlinguetteC. P.Nat. Rev. Mater.2022,7,55.
doi: 10.1038/s41578-021-00356-2 |
117 |
ChenC. B.;LiY. F.;YuS.;LouisiaS.;JinJ. B.;LiM. F.;RossM. B.;YangP. D.Joule2020,4,1688.
doi: 10.1016/j.joule.2020.07.009 |
118 |
LiJ. J.;AbbasS. U.;WangH. Q.;ZhangZ. C.;HuW. P.Nano-Micro Lett.2021,13,216.
doi: 10.1007/s40820-021-00738-9 |
119 |
LiX.;KouZ. K.;WangJ.Small Methods2020,5,2001010.
doi: 10.1002/smtd.202001010 |
120 |
ShaoQ.;WangP. T.;HuangX. Q.Adv. Funct. Mater.2019,29,1806419.
doi: 10.1002/adfm.201806419 |
121 |
GaoD. F.;ZhangY.;ZhouZ. W.;CaiF.;ZhaoX. F.;HuangW. G.;LiY. S.;ZhuJ. F.;LiuP.;YangF.;et alJ. Am. Chem. Soc.2017,139,5652.
doi: 10.1021/jacs.7b00102 |
122 |
BackS.;KimJ. H.;KimY. T.;JungY.ACS Appl. Mater. Interfaces2016,8,23022.
doi: 10.1021/acsami.6b05903 |
123 |
DuanM. Y.;YuJ.;MengJ.;ZhuB. E.;WangY.;GaoY.Angew. Chem. Int. Ed.2018,57,6464.
doi: 10.1002/anie.201800925 |
124 |
LinY.;ZhouM.;TaiX. L.;LiH. F.;HanX.;YuJ. G.Matter2021,4,2309.
doi: 10.1016/j.matt.2021.05.005 |
125 |
Morales-GuioC. G.;CaveE. R.;NitopiS. A.;FeasterJ. T.;WangL.;KuhlK. P.;JacksonA.;JohnsonN. C.;AbramD. N.;HatsukadeT.;et alNat. Catal.2018,1,764.
doi: 10.1038/s41929-018-0139-9 |
126 |
WangJ. Q.;LiZ.;DongC. K.;FengY.;YangJ.;LiuH.;DuX. W.ACS Appl. Mater. Interfaces2019,11,2763.
doi: 10.1021/acsami.8b20545 |
127 |
HuangJ.F.;MensiM.;OveisiE.;MantellaV.;Buonsanti;R.J. Am. Chem. Soc.2019,141,2490.
doi: 10.1021/jacs.8b12381 |
128 |
HuangX. Q.;LiY. J.;ZhouH. L.;ZhongX.;DuanX. F.;HuangY.Chem. Eur. J.2012,18,9505.
doi: 10.1002/chem.201200817 |
129 |
KimN. R.;ShinK.;JungI.;ShimM.;LeeH. M.J. Phys. Chem. C2014,118,26324.
doi: 10.1021/jp506069c |
130 |
ChenZ.;MochizukiD.;MaitaniM. M.;WadaY.Nanotechnology2013,24,265602.
doi: 10.1088/0957-4484/24/26/265602 |
131 |
GaoJ.;RenD.;GuoX. Y.;ZakeeruddinS. M.;GrätzelM.Faraday Discuss2019,215,282.
doi: 10.1039/c8fd00219c |
132 |
LumY. W.;AgerJ. W.Energy Environ. Sci.2018,11,2935.
doi: 10.1039/c8ee01501e |
133 |
ZhangT. Y.;LiZ. Y.;ZhangJ. F.;WuJ. J.J. Catal.2020,387,163.
doi: 10.1016/j.jcat.2020.05.002 |
134 |
ZhangB. A.;NoceraD. G.ChemElectroChem2021,8,1918.
doi: 10.1002/celc.202100295 |
135 | HoriY.;WakebeH.;TsukamotoT.;KogaO.Surf. Sci.1995,335,258. |
136 |
MontoyaJ. H.;ShiC.;ChanK.;NørskovJ. K.J. Phys. Chem. Lett.2015,6,2032.
doi: 10.1021/acs.jpclett.5b00722 |
137 |
JiangK.;SandbergR. B.;AkeyA. J.;LiuX. Y.;BellD. C.;NørskovJ. K.;ChanK.;WangH.Nat. Catal.2018,1,111.
doi: 10.1038/s41929-017-0009-x |
138 |
SchoutenK. J. P.;GallentE. P.;KoperM. T. M.ACS Catal.2013,3,1292.
doi: 10.1021/cs4002404 |
139 |
IyengarP.;KolbM. J.;PankhurstJ. R.;Calle-VallejoF.;BuonsantiR.ACS Catal.2021,11,4456.
doi: 10.1021/acscatal.1c00420 |
140 |
MaY. B.;YuJ. L.;SunM. Z.;ChenB.;ZhouX. C.;YeC. L.;GuanZ. Q.;GuoW. H.;WangG.;LuS. Y.;et alAdv. Mater.2022,34,2110607.
doi: 10.1002/adma.202110607 |
141 |
PangX. H.;WanC. S.;WangM. Y.;LinZ. Q.Angew. Chem. Int. Ed.2014,53,5524.
doi: 10.1002/anie.201309352 |
142 |
JiaH. L.;YangY. Y.;ChowT. H.;ZhangH.;LiuX. Y.;WangJ. F.;ZhangC. Y.Adv. Funct. Mater.2021,31,2101255.
doi: 10.1002/adfm.202101255 |
143 |
ZhuY. T.;GaoZ. Q.;ZhangZ. C.;LinT.;ZhangQ. H.;LiuH. L.;GuL.;HuW. P.Nano Res.2022,
doi: 10.1007/s12274-022-4234-5 |
144 |
WangF. Q.;ZhangW. L.;WanH. B.;LiC. X.;AnW. K.;ShengX.;LiangX. Y.;WangX. P.;RenY. L.;ZhengX.Chin. Chem. Lett.2022,33,2259.
doi: 10.1016/j.cclet.2021.08.074 |
145 |
WangZ. J.;QiJ.;YangN. J.;YuR. B.;WangD.Mater. Chem. Front.2021,5,1126.
doi: 10.1039/d0qm00538j |
146 |
MonzóJ.;MalewskiY.;KortleverR.;Vidal-IglesiasF. J.;Solla-GullónJ.;KoperM. T. M.;RodriguezP.J. Mater. Chem. A2015,3,23690.
doi: 10.1039/c5ta06804e |
147 |
ZhangS. S.;ZhaoS. L.;QuD. X.;LiuX. J.;WuY. P.;ChenY. H.;HuangW.Small2021,17,2102293.
doi: 10.1002/smll.202102293 |
148 |
ZhangB. B.;WangY. H.;XuS. M.;ChenK.;YangY. G.;KongQ. H.RSC Adv.2020,10,19192.
doi: 10.1039/d0ra02482a |
149 |
ChoukrounD.;PacquetsL.;LiC.;HoekxS.;ArnoutsS.;BaertK.;HauffmanT.;BalsS.;BreugelmansT.ACS Nano2021,15,14858.
doi: 10.1021/acsnano.1c04943 |
150 |
ZhouJ. H.;YuanC. Y.;ZhengY. L.;YinH. J.;YuanK.;SunX. C.;ZhangY. W.RSC Adv.2021,11,38486.
doi: 10.1039/d1ra07507a |
151 |
ZhangS. H.;YangQ.;WangC.;LuoX. L.;KimJ.;WangZ.;YamauchiY.Adv. Sci.2018,5,1801116.
doi: 10.1002/advs.201801116 |
152 |
ChenH.;ZhouY.;GuoW.;XiaB. Y.Chin. Chem. Lett.2022,33,1831.
doi: 10.1016/j.cclet.2021.09.034 |
153 |
LiH. L.;EddaoudiM.;O'KeeffeM.;YaghiO. M.Nature1999,402,276.
doi: 10.1038/46248 |
154 | GaoZ. Q.;WangC. Y.;LiJ. J.;ZhuY. T.;ZhangZ. C.;HuW. P.Acta Phys. -Chim. Sin.2021,37,2010025. |
高增强;王聪勇;李俊俊;朱亚廷;张志成;胡文平;物理化学学报,2021,37,2010025.
doi: 10.3866/PKU.WHXB202010025 |
|
155 |
ZhangZ. C.;ChenY. F.;XuX. B.;ZhangJ. C.;XiangG. L.;HeW.;WangX.Angew. Chem. Int. Ed.2014,53,429.
doi: 10.1002/anie.201308589 |
156 |
ZhouH. C.;LongJ. R.;YaghiO. M.Chem. Rev.2012,112,673.
doi: 10.1021/cr300014x |
157 |
FurukawaH.;CordovaK. E.;O'KeeffeM.;YaghiO. M.Science2013,341,1230444.
doi: 10.1126/science.1230444 |
158 |
WangX.;SheP. F.;ZhangQ. C.SmartMat2021,2,299.
doi: 10.1002/smm2.1057 |
159 |
QiuY. L.;ZhongH. X.;ZhangT. T.;XuW. B.;SuP. P.;LiX. F.;ZhangH. M.ACS Appl. Mater. Interfaces2018,10,2480.
doi: 10.1021/acsami.7b15255 |
160 |
ZhaoZ. H.;ZhengK.;HuangN. Y.;ZhuH. L.;HuangJ. R.;LiaoP. Q.;ChenX. M.Chem. Commun.2021,57,12764.
doi: 10.1039/d1cc05376k |
161 |
MengD. L.;ZhangM. D.;SiD. H.;MaoM. J.;HouY.;HuangY. B.;CaoR.Angew. Chem. Int. Ed.2021,60,25485.
doi: 10.1002/anie.202111136 |
162 |
OttS.;OrfanidiA.;SchmiesH.;AnkeB.;NongH. N.;HübnerJ.;GernertU.;GliechM.;LerchM.;StrasserP.Nat. Mater.2019,19,77.
doi: 10.1038/s41563-019-0487-0 |
163 |
ZhangJ. T.;ZhaoZ. H.;XiaZ. H.;DaiL. M.Nat. Nanotechnol.2015,10,444.
doi: 10.1038/nnano.2015.48 |
164 |
LiW. L.;HerktB.;SeredychM.;BandoszT. J.Appl. Catal. B2017,207,195.
doi: 10.1016/j.apcatb.2017.02.023 |
165 |
PanF. P.;LiB. Y.;XiangX. M.;WangG. F.;LiY.ACS Catal.2019,9,2124.
doi: 10.1021/acscatal.9b00016 |
166 |
WuJ. J.;MaS. C.;SunJ.;GoldJ. I.;TiwaryC.;KimB.;ZhuL. Y.;ChopraN.;OdehI. N.;VajtaR.;et alNat. Commun.2016,7,13869.
doi: 10.1038/ncomms13869 |
167 |
ZamanS.;TianX. L.;SuY.-Q.;CaiW. W.;YanY.;QiR. J.;DoukaA. I.;ChenS. H.;YouB.;LiuH. F.;et alSci. Bull.2021,66,2207.
doi: 10.1016/j.scib.2021.07.001 |
168 |
RedduV.;SunL. B.;LiX. G.;JinH. L.;WangS.;WangX.SmartMat.2022,3,151.
doi: 10.1002/smm2.1081 |
169 |
BiW. T.;LiX. G.;YouR.;ChenM. L.;YuanR. L.;HuangW. X.;WuX. J.;ChuW. S.;WuC. Z.;XieY.Adv. Mater.2018,30,1706617.
doi: 10.1002/adma.201706617 |
170 |
KumarB.;AsadiM.;PisasaleD.;Sinha-RayS.;RosenB. A.;HaaschR.;AbiadeJ.;YarinA. L.;Salehi-KhojinA.Nat. Commun.2013,4,2819.
doi: 10.1038/ncomms3819 |
171 |
ZhangS.;KangP.;UbnoskeS.;BrennamanM. K.;SongN.;HouseR. L.;GlassJ. T.;MeyerT. J.J. Am. Chem. Soc.2014,136,7845.
doi: 10.1021/ja5031529 |
172 |
SharmaP. P.;WuJ. J.;YadavR. M.;LiuM. J.;WrightC. J.;TiwaryC. S.;YakobsonB. I.;LouJ.;AjayanP. M.;ZhouX. D.Angew. Chem. Int. Ed.2015,54,13701.
doi: 10.1002/ange.201506062 |
173 |
WuJ. J.;LiuM. J.;SharmaP. P.;YadavR. M.;MaL. L.;YangY. C.;ZouX. L.;ZhouX.-D.;VajtaiR.;YakobsonB. I.;et alNano Lett.2016,16,466.
doi: 10.1021/acs.nanolett.5b04123 |
174 |
GaoJ.;WangH.;FengK.;XiangC. S.;WangH. B.;QiH. H.;LiuY.;TianH.;ZhongJ.;KangZ. H.Mater. Adv.2020,1,2286.
doi: 10.1039/D0MA00433B |
175 |
SongY.;PengR.;HensleyD. K.;BonnesenP. V.;LiangL. B.;WuZ. L.;Meyer ⅢH. M.;ChiM. F.;MaC.;SumpterB. G.;et alChemistrySelect2016,1,6055.
doi: 10.1002/slct.201601169 |
176 |
LiQ.;ZhuW. L.;FuJ. J.;ZhangH. Y.;WuG.;SunS. H.Nano Energy2016,24,1.
doi: 10.1016/j.nanoen.2016.03.024 |
177 |
WangX. L.;AraújoJ. F. D.;JuW.;BaggerA.;SchmiesH.;KühlS.;RossmeislJ.;StrasserP.Nat. Nanotechnol.2019,14,1063.
doi: 10.1038/s41565-019-0551-6 |
178 |
LeeJ. C.;KimJ. Y.;JooW. H.;HongD. K.;OhS. H.;KimB.;LeeG. D.;KimM.;OhJ.;JooY. C.J. Mater. Chem. A2020,8,11632.
doi: 10.1039/d0ta03322g |
179 |
LiuS.;CaoY.;LiuH.;WangH. L.;ZhangB. S.;ZhangY. M.;ZhangL. H.;ZhangS.;SunJ.Nanoscale2021,13,16986.
doi: 10.1039/D1NR04802C |
180 |
ChenD.;ZhangL. H.;DuJ.;WangH. H.;GuoJ. Y.;ZhanJ. Y.;LiF.;YuF. S.Angew. Chem. Int. Ed.2021,60,24022.
doi: 10.1002/anie.202109579 |
181 |
WeiX.;YinZ. L;LyuK. J.;LiZ.;GongJ.;WangG. W.;XiaoL.;LuJ. T.;ZhuangL.ACS Catal.2020,10,4103.
doi: 10.1021/acscatal.0c00049 |
182 |
PanH. Q.;BarileC. J.Energy Environ. Sci.2020,13,3567.
doi: 10.1039/d0ee02189j |
183 |
WangJ. C.;ChengT.;FenwickA. Q.;BaroudT. N.;Rosas-HernándezA.;KoJ. H.;GanQ.;GoddardW. A.;GrubbsR. H.J. Am. Chem. Soc.2021,143,2857.
doi: 10.1021/jacs.0c12478 |
184 |
DuanG. Y;LiX. Q.;DingG. R.;HanL. J.;XuB. H.;ZhangS. J.Angew. Chem. Int. Ed.2021,61,e202110657.
doi: 10.1002/anie.202110657 |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[3] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[4] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[5] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[6] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[7] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[8] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[9] | 王吉超, 乔秀, 史维娜, 贺景, 陈军, 张万庆. 多面体状Cu2O修饰片状BiOI的S型异质结构筑及光催化水蒸气中CO2转化性能研究[J]. 物理化学学报, 2023, 39(6): 2210003 - . |
[10] | 刘振中, 万思文, 吴阳, 王波延, 季宏亮. CoFe2O4/CuO活化过氧乙酸高效降解磺胺甲恶唑[J]. 物理化学学报, 2023, 39(5): 2211019 -0 . |
[11] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[12] | 荣佑文, 桑佳琪, 车丽, 高敦峰, 汪国雄. 二氧化碳电催化还原中的电解质效应[J]. 物理化学学报, 2023, 39(5): 2212027 -0 . |
[13] | 于艳科, 耿梦荞, 魏德胜, 何炽. 钾对CuSO4/TiO2脱硝催化剂的失活效应[J]. 物理化学学报, 2023, 39(4): 2206034 -0 . |
[14] | 许义飞, 杨瀚文, 常晓侠, 徐冰君. 电催化动力学简介[J]. 物理化学学报, 2023, 39(4): 2210025 -0 . |
[15] | 王奥琦, 陈军, 张鹏飞, 唐珊, 冯兆池, 姚婷婷, 李灿. NiMo(O)物相结构与电解水析氢反应活性的关联[J]. 物理化学学报, 2023, 39(4): 2301023 -0 . |
|