物理化学学报 >> 2003, Vol. 19 >> Issue (07): 661-665.doi: 10.3866/PKU.WHXB20030720

研究简报 上一篇    下一篇

甲烷在飞秒强激光场中的解离

唐晓萍;王素凡;高丽蓉;王操;孔繁敖   

  1. 中国科学院化学研究所, 分子反应动力学实验室,北京 100080
  • 收稿日期:2002-10-08 修回日期:2003-03-03 发布日期:2003-07-15
  • 通讯作者: 孔繁敖 E-mail:kong@mrdlab.icas.ac.cn

Dissociation of Methane in Intense Femtosecond Laser Field

Tang Xiao-Ping;Wang Su-Fan;Gao Li-Rong;Wang Cao;Kong Fan-Ao   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080
  • Received:2002-10-08 Revised:2003-03-03 Published:2003-07-15
  • Contact: Kong Fan-Ao E-mail:kong@mrdlab.icas.ac.cn

摘要: 用波长为800 nm,脉宽为160 fs,强度范围为7.6×1013~1.4×1014 W•cm-2的强激光使甲烷分子解离,并用质谱仪检测产生的离子.母体离子在较低的激光强度(7.6×1013 W•cm-2)下出现;当激光强度增加到8.0×1013 W•cm-2时,开始出现;CH2+、CH+和C+离子出现的阈值分别为1.0×1014 W•cm-2、1.4×1014 W•cm-2和1.4×1014 W•cm-2.这些现象表明甲烷的解离是一个顺序过程.质谱图中没有多电荷离子,因此排除了发生库仑爆炸的可能.以线偏振激光作用于甲烷,只有H+离子有各向异性的角度分布,暗示分子中的化学键是被激光外场拉断的,且初级产物离子H+是沿着激光电场的方向飞出.提出的准双原子分子模型较好地解释了实验结果.

关键词: 飞秒激光, 强激光场, 甲烷, 飞行时间质谱, 解离

Abstract: Methane molecules were irradiated by a laser beam in the intensity range of 7.6 ×1013~1.4×1014 W•cm-2 (800 nm, 160 fs). A time of flight mass spectrometer was coupled to the laser system. The parent ions can be seen at low laser intensity of 7.6×1013 W•cm-2. When the laser intensity increases to 8 .0×1013 W•cm-2, CH3+ ions appear. The appearance of the CH2+, CH+, C+ ions are at the laser intensities of 1.0×1014 W•cm-2, 1.4×1014 W•cm-2 and 1.4×1014 W•cm-2, respectively. The facts show that dissociation of methane is a step-wise process. Coulomb explosion does not happen during the dissociation because no multi-electron ions are found in the mass spectra. Only H+ ion yield has anisotropic angular distribution when methane is irradiated by a linearly polarized laser. This fact implies that the chemical bonds in the molecule are pulled off by the laser field and that the H+ ion flies along the direction of the laser electronic field. The quasi-diatomic molecule model we proposed can explain the experimental results satisfactorily.

Key words: Femtosecond laser, Intense laser field, Methane, TOFMS, Dissociation