物理化学学报 >> 2003, Vol. 19 >> Issue (08): 762-765.doi: 10.3866/PKU.WHXB20030818

研究简报 上一篇    下一篇

亚氯酸盐-硫代硫酸盐非缓冲体系的动力学

王舜;高庆宇;王新红;林娟娟;赖顺安;莫言学   

  1. 中国矿业大学化工学院,徐州 221008; 温州师范学院化学与材料科学系,温州 325027
  • 收稿日期:2003-01-07 修回日期:2003-03-12 发布日期:2003-08-15
  • 通讯作者: 高庆宇 E-mail:gaoqy@cumt.edu.cn

Complex Kinetics of the Chlorite-Thiosulfate in an Unbuffered Reaction System

Wang Shun;Gao Qing-Yu;Wang Xin-Hong;Lin Juan-Juan;Lai Shun-An;Mo Yan-Xue   

  1. College of Chemical Engineering, China University of Mining and Technology, Xuzhou, 221008; Department of Chemistry and Material Science, Wenzhou Normal College, Wenzhou 325027
  • Received:2003-01-07 Revised:2003-03-12 Published:2003-08-15
  • Contact: Gao Qing-Yu E-mail:gaoqy@cumt.edu.cn

摘要: 研究了亚氯酸盐-硫代硫酸盐反应体系在非缓冲条件下的复杂动力学行为.结果发现,在开放体系中反应的pH值和Pt电位存在准周期振荡分叉和混合模式振荡分叉通向混沌的过程,且pH峰与Pt电位峰反相位.当与起始浓度比相对较小时,随着流速的逐渐升高,体系的pH值和Pt电位从简单的小振幅振荡(S)经过准周期振荡分叉到混沌,最后回到简单大振幅振荡(L);而当与起始浓度比相对较高时,随着流速的降低,体系的pH值和Pt电位出现LS1、LS2、LS3…LSn的混合模式振荡,并在每对(LSn、LSn+1)振荡区间发现了LSn、LSn+1随机出现的非周期振荡行为.运用硫价态变化的一般动力学模型,模拟出了反应体系的混合模式振荡及非周期振荡.

关键词: 准周期振荡, 混合模式振荡, 动力学模拟

Abstract: The complex kinetics of ClO2―-S2O32- nonlinear reaction system in an unbuffered solution has been investigated in a CSTR. Both quasiperiodic and mixed-mode oscillations of pH and Pt potential were observed. At relatively low [NaClO2]0/[Na2S2O3]0 ratio, the system changed from small-amplitude oscillations and quasiperiodic oscillations to chaos and pure large-amplitude oscillations with increasing the flow rate. At higher initial concentration ratio, however, quasiperiodicity was given way to mixed-mode oscillations in which each period consists of one large and n small peaks (LSn). LS, LS2,LS3,…, LSn were obtained when the flow rate was decreased. For a narrow range of flow rate between each pair of periodic regions(LSn, LSn+1), a region of aperiodic behavior, an apparently stochastic mixture of LSn and LSn+1, was also observed. A general model based upon changes in the oxidation state of sulfur in the presence of a generic oxidant simulated the mixed-mode oscillations and aperiodic behavior.

Key words: Quasiperiodic oscillations, Mixed-mode oscillations, Dynamic simulation