物理化学学报 >> 2020, Vol. 36 >> Issue (10): 1909048.doi: 10.3866/PKU.WHXB201909048

所属专题: 胶体与界面化学前沿

综述 上一篇    下一篇

肽基超分子胶体

邢蕊蕊, 邹千里, 闫学海()   

  • 收稿日期:2019-09-26 录用日期:2019-10-16 发布日期:2020-06-11
  • 通讯作者: 闫学海 E-mail:yanxh@ipe.ac.cn
  • 作者简介:闫学海,2008年于中国科学院化学研究所获得博士学位,之后在德国马普胶体与界面研究所先后从事博士后和洪堡学者研究工作。2013年回国加入中国科学院过程工程研究所,现为研究员,博士生导师。主要研究方向为生物分子组装和工程化研究,特别是肽自组装与生物医药应用
  • 基金资助:
    国家自然科学基金(21802144);国家自然科学基金(21522307);国家自然科学基金(21977095);国家自然科学基金委员会与金砖国家科技创新框架计划合作研究项目(51861145304)

Peptide-based Supramolecular Colloids

Ruirui Xing, Qianli Zou, Xuehai Yan()   

  • Received:2019-09-26 Accepted:2019-10-16 Published:2020-06-11
  • Contact: Xuehai Yan E-mail:yanxh@ipe.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(21802144);the National Natural Science Foundation of China(21522307);the National Natural Science Foundation of China(21977095);the National Natural Science Fund BRICS STI Framework Program, China(51861145304)

摘要:

肽基超分子胶体是基于肽分子间超分子作用,自发形成且具有有序分子排布及规整结构,兼具传统胶体及超分子特性的组装体系。利用超分子弱相互作用构筑功能性胶体,不仅是人们对生命组装进程深入理解的有效手段,也是实现优异的超分子材料的重要途径。肽分子具有组成明确、性能可调、生物安全性高及可降解等优势,是超分子化学、胶体与界面化学领域重要的组装基元。基于肽的超分子自组装,能够实现多尺度、多功能的生物胶体的构筑,被广泛应用于医药、催化、能源等领域。如何通过对肽序列的设计及分子间作用力的调控,实现对胶体结构和功能的精确控制,是近年来研究的重要课题之一。从分子尺度研究和揭示超分子胶体的组装过程及物理化学机制,探究胶体结构与功能的关系,是实现超分子结构和功能化的重要内容。本文基于“分子间作用的调控”及“结构与功能的关系”两个基本科学问题,系统地综述了肽基超分子胶体的组装机制、结构与功能,以及研究现状。

关键词: 肽, 自组装, 超分子胶体, 功能化, 生物医药应用

Abstract:

Peptide-based supramolecular colloids are assembled systems based on weak interactions between peptides (such as hydrogen bonding, electrostatic forces, hydrophobic effects, ππ interactions, and van der Waals forces), spontaneously formed in a bottom-up manner. Peptide-based supramolecular colloids have ordered molecular arrangements and regular structures, with characteristics of both traditional colloids and supramolecular systems. Constructing functional supramolecular colloids via weak intermolecular interactions assists in understanding the process of biomolecular self-assembly in vivo and provides an effective strategy for designing supramolecular materials with excellent performance. Peptides, consisting of several amino acids, are elegant building blocks in supramolecular chemistry as well as colloid and interface chemistry because of their biological origin, clear composition, low immunogenicity, structural programmability, excellent biosafety, and high biodegradability. Based on the approach of supramolecular self-assembly, peptides can be manipulated to form multiscale and multifunctional colloidal systems, which have widespread applications in medicine, catalysis, energy, nanotechnology, and other fields. However, the realization of precise control of the structures and functions of these supramolecular colloids through peptide design and intermolecular interactions regulation remains an important issue to be addressed. To study the assembly process and physicochemical mechanism of supramolecular colloids at the molecular scale, and to explore the relationship between colloidal structure and function, the construction and functionalization of supramolecular colloids must be achieved. This work is a systematic summary of the assembly mechanism, structures, and functions as well as the state of the art of peptide-based supramolecular colloids with emphasis on the regulation of intermolecular interactions and structure-function relationships. The research progress of peptide-based supramolecular colloids in the following fields is summarized herein: i) biomimetic photosynthesis, including light capture and charge separation; and ii) tumor phototherapies, including photothermal therapy (PTT) and photodynamic therapy (PDT). Currently, it is feasible to induce functional enhancement of peptide colloids via supramolecular assembly. The most important aspect is to design the primary structure of the peptide building block, to precisely control the weak interactions between peptide molecules and rationally optimize the self-assembly process, and control the size and structure of the assemblies. Follow-up studies should focus on the design of molecular precursors, the combination of basic research and practical application of peptide-based supramolecular colloids will be essential. The advantages of peptide-based supramolecular colloids, including their ordered organization, flexible structures, and versatile functions, will open up novel avenues for various applications of supramolecular colloids in fields such as green energy and medicine. It is hoped that this review will provide inspiration and broaden ideas to further drive the development and application of supramolecular colloids.

Key words: Peptide, Self-assembly, Supramolecular colloid, Functionalization, Biomedical application