物理化学学报 >> 2002, Vol. 18 >> Issue (08): 699-704.doi: 10.3866/PKU.WHXB20020806

研究论文 上一篇    下一篇

一个新的桥泛函及其在非均一流体密度泛函理论中的应用

周世琦;张晓祺   

  1. 株洲工学院现代统计力学研究所,株洲 412008
  • 收稿日期:2001-12-26 修回日期:2002-03-01 发布日期:2002-08-15
  • 通讯作者: 周世琦 E-mail:chixiayzsq@yahoo.com

A New Bridge Functional and Its Application to Density Functional Approach for Non-uniform Fluid

Zhou Shi-Qi;Zhang Xiao-Qi   

  1. Research Institute of Modern Statistical Mechanics, Zhuzhou Institute of Technology, Zhuzhou 412008
  • Received:2001-12-26 Revised:2002-03-01 Published:2002-08-15
  • Contact: Zhou Shi-Qi E-mail:chixiayzsq@yahoo.com

摘要: 基于对OZ 方程的渐近行为与Taylor级数展开的分析,提出了一个新的桥泛函,桥泛函被表达为间接相关函数的函数,Taylor级数展开的重整化导致了一个可调参数,通过将所提出的桥泛函与一个最近提出的密度泛函理论方法学,以及单个硬墙的sum 规则结合,可以确定可调参数.所提出的桥泛函能预言如下非均一流体的密度分布:硬球流体接近一个硬墙与在球形空隙内,Lennard-Jones 流体与缔合硬球流体在两个硬墙之内.理论预言与文献所报导的模拟数据符合很好.

关键词: 密度泛函理论, 桥泛函, 缔合硬球流体, 积分方程理论, 硬球流体

Abstract: To extend the recently proposed density functional theory(DFT)methodology to non-uniform non-hard sphere fluid, a new bridge functional as a function of indirect correlation function was proposed, which was based on analysis on the asymptotic behavior of the Ornstein-Zernike equation system and the Taylor expansion series whose re-normalization resulted in an adjustable parameter determined by combining the new bridge functional with the DFT methodology to make the contact density from a single hard wall satisfy the sum rule. The combination of the new bridge functional and the DFT methodology predicted well the density distribution profile of hard sphere fluid near a hard wall or confined in a spherical cavity, Lennard-Jones fluid and adhesive hard sphere fluid confined between two hard walls when compared with the available computer simulation data.

Key words: Density functional theory, Bridge functional, Adhesive hard sphere fluid, Integral equation theory, Hard sphere fluid