物理化学学报 >> 2023, Vol. 39 >> Issue (6): 2212026.doi: 10.3866/PKU.WHXB202212026
所属专题: S型光催化剂
论文 上一篇
罗铖1, 龙庆1, 程蓓1, 朱必成2,*(), 王临曦2,*()
收稿日期:
2022-12-16
录用日期:
2023-01-11
发布日期:
2023-02-16
通讯作者:
朱必成,王临曦
E-mail:zhubicheng1991@163.com;linxiwang91@126.com
Cheng Luo1, Qing Long1, Bei Cheng1, Bicheng Zhu2,*(), Linxi Wang2,*()
Received:
2022-12-16
Accepted:
2023-01-11
Published:
2023-02-16
Contact:
Bicheng Zhu, Linxi Wang
E-mail:zhubicheng1991@163.com;linxiwang91@126.com
摘要:
光催化CO2还原制备可再生的碳氢燃料为缓解温室效应、解决能源短缺问题提供了一个可行的办法。然而,单一组分光催化剂的CO2还原活性非常低。一是因为光生载流子的快速复合导致光子效率很低。二是因为CO2的活化需要较高的能垒。对此,研究人员作出了许多改进以提高CO2还原性能。例如,发展S型异质结可以增强载流子的分离和光催化剂的氧化还原能力,引入金属单原子助催化剂可以优化反应热力学。因此,协同利用S型异质结和金属单原子修饰将能同时促进载流子的转移和CO2还原反应过程。本文构建了由单原子Pt负载的g-C3N4和BiOCl组成的Pt-C3N4/BiOCl异质结模型。用密度泛函理论计算研究了其光催化性能,包括几何结构和电子性质的探索、CO2转化过程的模拟。差分电荷密度结果表明g-C3N4中的电子转移至BiOCl,这是由于g-C3N4的费米能级比BiOCl的费米能级高。由此在g-C3N4/BiOCl异质结的界面处形成了由g-C3N4指向BiOCl的内建电场。在光照下,g-C3N4/BiOCl复合物中载流子的转移路径符合S型机制。具体而言,BiOCl导带的光生电子与g-C3N4价带的光生空穴复合,而g-C3N4导带的电子与BiOCl价带的空穴得以保留。在g-C3N4的空隙中添加Pt原子后,g-C3N4的功函数减小,由此增大了g-C3N4和BiOCl的费米能级差异。结果,有更多的电子从Pt-C3N4转移至BiOCl,内建电场的强度增大。这有利于Pt-C3N4/BiOCl S型异质结的电荷转移。此外,反应自由能计算结果表明,g-C3N4/BiOCl异质结上CO2还原反应的限速步骤是CO2氢化生成COOH,其能垒为1.13 eV。Pt原子修饰后,限速步骤变为CO氢化生成HCO,其能垒为0.71 eV。这些结果表明Pt单原子的引入能够增强界面电场、降低能垒,从而提高CO2还原活性。本工作为构建金属原子修饰的S型异质结光催化剂以实现高效的CO2还原提供了理论指导。
罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6), 2212026. doi: 10.3866/PKU.WHXB202212026
Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2212026. doi: 10.3866/PKU.WHXB202212026
1 |
Wang, S.; Tountas, A. A.; Pan, W.; Zhao, J.; He, L.; Sun, W.; Yang, D.; Ozin, G. A. Small 2021, 17, 2007025.
doi: 10.1002/smll.202007025 |
2 |
Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res 2006, 45, 2558.
doi: 10.1021/ie0505763 |
3 |
Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci 2017, 391, 72.
doi: 10.1016/j.apsusc.2016.07.030 |
4 |
Wu, S.; Li, X.; Tian, Y.; Lin, Y.; Hu, Y. H. Chem. Eng. J 2021, 406, 126747.
doi: 10.1016/j.cej.2020.126747 |
5 |
He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater 2022, 34, 2203225.
doi: 10.1002/adma.202203225 |
6 |
Wang, Q.; Wang, G.; Wang, J.; Li, J.; Wang, K.; Zhou, S.; Su, Y. Adv. Sustain. Syst 2022, 6, 2200027.
doi: 10.1002/adsu.202200027 |
7 |
Ong, C. B.; Ng, L. Y.; Mohammad, A. W. Renew. Sust. Energ. Rev 2018, 81, 536.
doi: 10.1016/j.rser.2017.08.020 |
8 |
Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun 2021, 12, 4936.
doi: 10.1038/s41467-021-25007-6 |
9 |
Wageh, S.; Al-Hartomy, O. A.; Alotaibi, M. F.; Liu, L.-J. Rare Met 2022, 41, 1077.
doi: 10.1007/s12598-021-01902-1 |
10 |
He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal 2020, 41, 9.
doi: 10.1016/s1872-2067(19)63382-6 |
11 |
Ke, Z.; Zheng, Y.; Zhang, J.; Zhang, G.; Wu, H.; Xu, X.; Zhou, W.; Zhu, X. Ceram. Int 2020, 46, 20138.
doi: 10.1016/j.ceramint.2020.05.089 |
12 |
Yang, M.; Li, J.; Ke, G.; Liu, B.; Dong, F.; Yang, L.; He, H.; Zhou, Y. J. Energy Chem 2021, 56, 37.
doi: 10.1016/j.jechem.2020.07.059 |
13 | Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008. |
朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华 物理化学学报, 2022, 38, 2111008. | |
14 |
Wang, J.; Cheng, H.; Wei, D.; Li, Z. Chin. J. Catal 2022, 43, 2606.
doi: 10.1016/S1872-2067(22)64091-9 |
15 |
Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol 2022, 117, 109.
doi: 10.1016/j.jmst.2021.11.046 |
16 |
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Solar RRL 2022, 6, 2100587.
doi: 10.1002/solr.202100587 |
17 | Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024. |
Wageh, S., Al-Ghamdi, A. A., 刘丽君 物理化学学报, 2021, 37, 2010024. | |
18 |
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal 2022, 43, 1657.
doi: 10.1016/S1872-2067(21)64010-X |
19 |
Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J. B.; Yu, J. Green Chem 2022, 24, 5739.
doi: 10.1039/D2GC01684B |
20 |
Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev 2022, 122, 10484.
doi: 10.1021/acs.chemrev.1c00473 |
21 |
Silva, A. M.; Rojas, M. I. Comput. Theor. Chem 2016, 1098, 41.
doi: 10.1016/j.comptc.2016.11.004 |
22 |
Xu, Y.; Gao, S.-P. Int. J. Hydrog. Energy 2012, 37, 11072.
doi: 10.1016/j.ijhydene.2012.04.138 |
23 |
Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol 2022, 112, 1.
doi: 10.1016/j.jmst.2021.10.016 |
24 |
Niu, P.; Zhang, L.; Liu, G.; Cheng, H.-M. Adv. Funct. Mater 2012, 22, 4763.
doi: 10.1002/adfm.201200922 |
25 |
Li, Y.; Ho, W.; Lv, K.; Zhu, B.; Lee, S. C. Appl. Surf. Sci 2018, 430, 380.
doi: 10.1016/j.apsusc.2017.06.054 |
26 |
Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114.
doi: 10.1021/acs.langmuir.1c02360 |
27 |
Wang, Z.; Xu, J.; Zhou, H.; Zhang, X. Rare Met 2019, 38, 459.
doi: 10.1007/s12598-019-01222-5 |
28 |
Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Small Struct 2021, 2, 2100086.
doi: 10.1002/sstr.202100086 |
29 |
Nguyen, V.-H.; Singh, P.; Sudhaik, A.; Raizada, P.; Le, Q. V.; Helmy, E. T. Mater. Lett 2022, 313, 131781.
doi: 10.1016/j.matlet.2022.131781 |
30 | Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014. |
沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫 物理化学学报, 2022, 38, 2110014. | |
31 |
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
32 |
Li, Y.; Xia, Z.; Yang, Q.; Wang, L.; Xing, Y. J. Mater. Sci. Technol 2022, 125, 128.
doi: 10.1016/j.jmst.2022.02.035 |
33 |
Zhao, X.; Xu, M.; Song, X.; Zhou, W.; Liu, X.; Huo, P. Chin. J. Catal 2022, 43, 2625.
doi: 10.1016/S1872-2067(22)64115-9 |
34 |
Tahir, M.; Tahir, B. J. Mater. Sci. Technol 2022, 106, 195.
doi: 10.1016/j.jmst.2021.08.019 |
35 |
Ali Khan, A.; Tahir, M. ACS Appl. Energy Mater 2022, 5, 784.
doi: 10.1021/acsaem.1c03266 |
36 |
Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. Appl. Catal. B 2021, 289, 120039.
doi: 10.1016/j.apcatb.2021.120039 |
37 |
Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol 2022, 121, 28.
doi: 10.1016/j.jmst.2021.11.073 |
38 |
Jin, Z.; Li, H.; Li, J. Chin. J. Catal 2022, 43, 303.
doi: 10.1016/S1872-2067(21)63818-4 |
39 |
Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustainable Syst 2022, 6, 2100264.
doi: 10.1002/adsu.202100264 |
40 |
Chen, Y.; Wang, F.; Cao, Y.; Zhang, F.; Zou, Y.; Huang, Z.; Ye, L.; Zhou, Y. ACS Appl. Energy Mater 2020, 3, 4610.
doi: 10.1021/acsaem.0c00273 |
41 |
Qi, S.; Liu, X.; Zhang, R.; Zhang, Y.; Xu, H. Inorg. Chem. Commun 2021, 133, 108907.
doi: 10.1016/j.inoche.2021.108907 |
42 |
Zhang, R.; Niu, S.; Xiang, J.; Zheng, J.; Jiang, Z.; Guo, C. Sep. Purif. Technol 2021, 261, 118258.
doi: 10.1016/j.seppur.2020.118258 |
43 |
Yang, Q.; Li, R.; Wei, S.; Yang, R. Appl. Surf. Sci 2022, 572, 151525.
doi: 10.1016/j.apsusc.2021.151525 |
44 |
Cai, J.; Maimaitizi, H.; Okitsu, K.; Tursun, Y.; Abulizi, A. Int. J. Energy Res 2022, 46, 12147.
doi: 10.1002/er.7978 |
45 |
Fu, J.; Zhu, L.; Jiang, K.; Liu, K.; Wang, Z.; Qiu, X.; Li, H.; Hu, J.; Pan, H.; Lu, Y.; Chan, T.; Liu, M. Chem. Eng. J 2021, 415, 128982.
doi: 10.1016/j.cej.2021.128982 |
46 |
Azofra, L. M.; MacFarlane, D. R.; Sun, C. Phys. Chem. Chem. Phys 2016, 18, 18507.
doi: 10.1039/C6CP02453J |
47 |
Xia, Y.; Sayed, M.; Zhang, L.; Cheng, B.; Yu, J. Chem Catal 2021, 1, 1173.
doi: 10.1016/j.checat.2021.08.009 |
48 |
Ao, C.; Feng, B.; Qian, S.; Wang, L.; Zhao, W.; Zhai, Y.; Zhang, L. J. CO2 Util. 2020, 36, 116.
doi: 10.1016/j.jcou.2019.11.007 |
49 |
Li, Y.; Li, B.; Zhang, D.; Cheng, L.; Xiang, Q. ACS Nano 2020, 14, 10552.
doi: 10.1021/acsnano.0c04544 |
50 |
Yao, W.; Zhang, J.; Wang, Y.; Ren, F. Appl. Surf. Sci 2018, 435, 1351.
doi: 10.1016/j.apsusc.2017.11.259 |
51 |
Wang, M.; Tan, G.; Feng, S.; Dang, M.; Wang, Y.; Zhang, B.; Ren, H.; Lv, L.; Xia, A.; Liu, W.; et al J. Hazard. Mater 2021, 408, 124897.
doi: 10.1016/j.jhazmat.2020.124897 |
52 |
Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal 2021, 42, 115.
doi: 10.1016/s1872-2067(20)63598-7 |
53 | Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027. |
费新刚, 谭海燕, 程蓓, 朱必成, 张留洋 物理化学学报, 2021, 37, 2010027. | |
54 |
Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988.
doi: 10.1016/j.jmat.2021.02.015 |
55 |
Zhu, Z.; Tang, X.; Wang, T.; Fan, W.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Appl. Catal. B 2019, 241, 319.
doi: 10.1016/j.apcatb.2018.09.009 |
56 |
Gao, G.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Am. Chem. Soc 2016, 138, 6292.
doi: 10.1021/jacs.6b02692 |
57 | Wang, Y.; Liu, J.; Yu, M.; Zhong, J.; Zhou, Q.; Qiu, J.; Zhang, X. Acta Phys. -Chim. Sin. 2021, 37, 2006030. |
王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮 物理化学学报, 2021, 37, 2006030. | |
58 |
Yuan, Y.; Guo, R.; Hong, L.; Lin, Z.; Ji, X.; Pan, W. Chemosphere 2022, 287, 132241.
doi: 10.1016/j.chemosphere.2021.132241 |
59 |
Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal 2022, 43, 2548.
doi: 10.1016/S1872-2067(22)64111-1 |
60 |
Sun, H.; Tian, Z.; Zhou, G.; Zhang, J.; Li, P. Appl. Surf. Sci 2019, 469, 125.
doi: 10.1016/j.apsusc.2018.11.006 |
61 |
Shi, S.; Gondal, M. A.; Al-Saadi, A. A.; Fajgar, R.; Kupcik, J.; Chang, X.; Shen, K.; Xu, Q.; Seddigi, Z. S. J. Colloid Interface Sci 2014, 416, 212.
doi: 10.1016/j.jcis.2013.10.052 |
62 |
Wang, X.; Wang, Q.; Li, F.; Yang, W.; Zhao, Y.; Hao, Y.; Liu, S. Chem. Eng. J 2013, 234, 361.
doi: 10.1016/j.cej.2013.08.112 |
63 |
He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol 2023, 138, 256.
doi: 10.1016/j.jmst.2022.09.002 |
64 |
Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal 2021, 42, 667.
doi: 10.1016/S1872-2067(20)63705-6 |
65 |
Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. Appl. Catal. B 2018, 224, 983.
doi: 10.1016/j.apcatb.2017.11.025 |
66 |
Zhu, B.; Zhang, L.; Xu, D.; Cheng, B.; Yu, J. J. CO2 Util. 2017, 21, 327.
doi: 10.1016/j.jcou.2017.07.021 |
67 | Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. |
李云锋, 张敏, 周亮, 杨思佳, 武占省, 马玉花 物理化学学报, 2021, 37, 2009030. | |
68 |
Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187.
doi: 10.1016/j.matt.2022.09.009 |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 王鹤然, 陈凯, 伏硕, 王晧暄, 袁加轩, 胡星奕, 许文娟, 密保秀. 三种同分异构的双苯并吩噻嗪材料的合成、理论计算及光物理性质[J]. 物理化学学报, 2024, 40(1): 2303047 - . |
[3] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[4] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
[5] | 张珂瑜, 李云锋, 袁仕丹, 张洛红, 王倩. S型异质结H2O2光催化剂的研究进展[J]. 物理化学学报, 2023, 39(6): 2212010 - . |
[6] | 张利君, 吴有林, Tsubaki Noritatsu, 靳治良. CeO2-Cu2O 2D/3D S型异质结界面促进有序电荷转移以实现高效光催化析氢[J]. 物理化学学报, 2023, 39(12): 2302051 - . |
[7] | 蔡晓燕, 杜家豪, 钟光明, 张一鸣, 毛梁, 娄在祝. S-型异质结CeO2/ZnxCd1−xIn2S4空心结构的构建及其可见光分解水制氢性能[J]. 物理化学学报, 2023, 39(11): 2302017 - . |
[8] | 李若宁, 张雪, 薛娜, 李杰, 吴天昊, 徐榛, 王一帆, 李娜, 唐浩, 侯士敏, 王永锋. Ag(111)表面Ag配位结构的分等级组装[J]. 物理化学学报, 2022, 38(8): 2011060 - . |
[9] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[10] | 周亮, 李云锋, 张永康, 秋列维, 邢艳. 具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究[J]. 物理化学学报, 2022, 38(7): 2112027 - . |
[11] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[12] | 朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华. 二维/一维BiOBr0.5Cl0.5/WO3 S型异质结助力光催化CO2还原[J]. 物理化学学报, 2022, 38(7): 2111008 - . |
[13] | 黄悦, 梅飞飞, 张金锋, 代凯, Graham Dawson. 一维/二维W18O49/多孔g-C3N4梯形异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2108028 - . |
[14] | 刘珊池, 王凯, 杨梦雪, 靳治良. Mn0.2Cd0.8S@CoAl LDH S-型异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2109023 - . |
[15] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
|