物理化学学报 >> 2010, Vol. 26 >> Issue (04): 1151-1156.doi: 10.3866/PKU.WHXB20100417

材料物理化学 上一篇    下一篇

简易方法制备交叉碳纳米管-石墨烯异质结

甘霖, 刘松, 李丹娜, 谷航, 曹阳, 申茜, 王振兴, 王青, 郭雪峰   

  1. 北京大学化学与分子工程学院, 分子动态与稳态结构国家重点实验室, 北京分子科学国家实验室, 北京 100871
  • 收稿日期:2009-11-24 修回日期:2010-01-14 发布日期:2010-04-02
  • 通讯作者: 郭雪峰 E-mail:guoxf@pku.edu.cn

Facile Fabrication of the Crossed Nanotube-Graphene Junctions

GAN Lin, LIU Song, LI Dan-Na, GU Hang, CAO Yang, SHEN Qian, WANG Zhen-Xing, WANG Qing, GUO Xue-Feng   

  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
  • Received:2009-11-24 Revised:2010-01-14 Published:2010-04-02
  • Contact: GUO Xue-Feng E-mail:guoxf@pku.edu.cn

摘要:

发展了一种通过两次高分子辅助转移和选择性氧等离子体刻蚀技术大量制备交叉碳纳米管-石墨烯异质结的无损方法. 拉曼光谱和导电性测试证明, 制备的单层石墨烯薄片在大面积范围内质量均一、导电性好. 而且, 本文所讨论的单层石墨烯的生长和随后的器件制备也提供了大面积制备石墨烯薄片图案化的可重复性方法. 该方法与传统的薄膜技术兼容, 只需简易的几步便可把图案化的石墨烯集成到大规模的微电子器件回路中, 有望实现流线型和自动化的石墨烯微电子器件的大量生产. 这些研究结果为进一步制备分子整流器和其它功能纳米/分子器件提供了技术基础.

关键词: 石墨烯, 纳米/分子器件, 单壁碳纳米管, 分子整流器, 纳米转移印刷

Abstract:

In this study, a nondestructive method to mass produce crossed nanotube-graphene junctions through twice polymer-mediated transfer techniques and selective oxygen plasma etching was developed. Raman and conductance measurements demonstrate that the quality and electrical properties of the single-layer graphene (SLG) sheets are uniform over a large area. Furthermore, SLG synthesis and device fabrication discussed here also provide a reproducible method to pattern graphene sheet arrays for making graphene-based microdevices over large areas and with high yield, which is compatible with standard thin film technologies and allows SLG to be integrated into large scale electronics circuitry within several simple steps that can be easily streamlined and automated. These results might offer grounds for the creation of a wide variety of molecular rectifiers and other functional nano/molecular devices.

Key words: Graphene, Nano/molecular device, Single-walled carbon nanotube, Molecular rectifier, Nanotransfer printing