物理化学学报 >> 2011, Vol. 27 >> Issue (12): 2836-2840.doi: 10.3866/PKU.WHXB20112836

电化学和新能源 上一篇    下一篇

花生壳制备微孔炭及其在电化学超级电容器中的应用

郭培志1, 季倩倩1, 张丽莉2, 赵善玉2, 赵修松1,2   

  1. 1. 青岛大学化学化工与环境学院, 纤维新材料与现代纺织国家重点实验室培育基地, 山东青岛 266071;
    2. Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
  • 收稿日期:2011-07-18 修回日期:2011-09-26 发布日期:2011-11-25
  • 通讯作者: 郭培志, 赵修松 E-mail:pzguo@qdu.edu.cn; chezxs@qdu.edu.cn
  • 基金资助:

    国家自然科学基金(20803037, 21143006), 青岛市应用基础研究项目(11-2-4-2-(8)-jch)和“泰山学者”计划资助

Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors

GUO Pei-Zhi1, JI Qian-Qian1, ZHANG Li-Li2, ZHAO Shan-Yu2, ZHAO Xiu-Song1,2   

  1. 1. Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, School of Chemistry,Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao 266071, Shandong Province,P. R. China;
    2. Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576
  • Received:2011-07-18 Revised:2011-09-26 Published:2011-11-25
  • Contact: GUO Pei-Zhi, ZHAO Xiu-Song E-mail:pzguo@qdu.edu.cn; chezxs@qdu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20803037, 21143006), Foundation of Qingdao Municipal Science and Technology Commission, China (11-2-4-2-(8)-jch) and“Taishan Scholar”Program of Shandong Province, China.

摘要: 以未使用和使用氢氧化钠溶液处理的花生壳为碳源分别制备出微孔炭PSC-1 和PSC-2. PSC-1 和PSC-2 的比表面积分别为552 和726 m2·g-1, 其主要孔径都约为0.8 nm. 用PSC-1 和PSC-2 制备的电极和对称型超级电容器的循环伏安曲线均接近矩形, 表明其具有良好的电容特性. 在以微孔炭电极为工作电极、铂电极为对电极和银/氯化银电极为参比电极组成的三电极体系测量表明, 在0.1 A·g-1的电流密度下, PSC-1 和PSC-2的比电容达到233和378 F·g-1. 经过1000次恒电流充放电循环后, 在三电极体系和超级电容器中电极均表现出良好的稳定性和电容保持率. 基于实验结果探讨了微孔炭的形成机理及其结构与电化学性质之间的联系.

关键词: 超级电容器, 电极, 微孔炭, 花生壳, 电容

Abstract: Microporous carbons (PSC-1 and PSC-2) were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment, respectively. Both samples have a main pore size of ~0.8 nm. The surface area increases from 552 m2·g-1 for PSC-1 to 726 m2·g-1 for PSC-2. Cyclic voltammograms (CVs) of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features. The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1, respectively, at a current density of 0.1 A·g-1 in a three-electrode system using porous carbon as the working electrode, a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode. Furthermore, the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles. The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.

Key words: Supercapacitor, Electrode, Microporous carbon, Peanut shell, Capacitance