物理化学学报 >> 2013, Vol. 29 >> Issue (01): 111-116.doi: 10.3866/PKU.WHXB201211091

电化学和新能源 上一篇    下一篇

聚苯胺改性氮掺杂碳纳米管制备及其超级电容器性能

李莉香, 陶晶, 耿新, 安百钢   

  1. 辽宁科技大学化工学院, 材料电化学研究所, 辽宁 鞍山 114051
  • 收稿日期:2012-08-06 修回日期:2012-11-09 发布日期:2012-12-14
  • 通讯作者: 安百钢 E-mail:baigang73@126.com
  • 基金资助:

    国家自然科学基金(51102126); 教育部留学回国基金(2011508); 辽宁省高等学校杰出青年学者成长计划(LJQ2011024, LJQ2012026)和辽宁省教育厅基金(L2010197)资助项目

Preparation and Supercapacitor Performance of Nitrogen-Doped Carbon Nanotubes from Polyaniline Modification

LI Li-Xiang, TAO Jing, GENG Xin, AN Bai-Gang   

  1. Institute of Materials Electrochemistry Research, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning Province, P.R. China
  • Received:2012-08-06 Revised:2012-11-09 Published:2012-12-14
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51102126), Foundation of the Ministry of Education of China for Returned Scholars (2011508), Growth Plan for Distinguished Young Scholars in Colleges and Universities of Liaoning, China (LJQ2011024, LJQ2012026), and Education Department Foundation of Liaoning, China (L2010197).

摘要:

利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs), 再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明, 苯胺包覆碳纳米管经炭化处理后, 得到以碳纳米管为核、氮掺杂碳层为壳, 具有核-壳结构的氮掺杂碳纳米管, 而碳纳米管本征结构未遭破坏. 研究表明, 随着苯胺用量的增大, 氮掺杂碳纳米管的氮掺杂碳层变厚, 氮含量从7.06%(质量分数)增加到8.64%, 而作为超级电容器电极材料, 随着氮掺杂碳层厚度降低, 氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1, 远高于原始碳纳米管10 F·g-1的比容量, 且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性, 经1000次充放电循环后仍保持初始容量的92.8%~97.1%, 表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大, 其具有的核壳结构特征也使循环稳定性增强。

关键词: 碳纳米管, 氮掺杂, 聚苯胺, 超级电容器

Abstract:

Nitrogen-doped carbon nanotubes (NCNTs) were prepared by carbonization of polyanilinecoated CNTs that were synthesized by in-situ polymerization of aniline on the CNT surface. The laser Raman spectroscopy, transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) indicated that carbonization treatment of the polyaniline (PANI) coated CNTs produced NCNTs owning the core-shell structure of a nitrogen-doped carbon shell and a CNT core, without destroying the intrinsic CNT structure. By increasing the aniline amount, the N-doped layer of the NCNTs became thicker, and the amount of nitrogen doping increased from 7.06% to 8.64% (mass fraction). As the supercapacitor electrode material, the NCNTs capacitance in 6 mol·L-1 aqueous KOH solution increased from 107 to 205 F·g-1 as the N-doped layer thickness decreased, which was much higher than the capacitance of 10 F·g-1 for the pristine CNTs. Especially, NCNT electrodes displayed good cyclability, maintaining 92.8%-97.1% of the initial capacitance after 1000 charge-discharge cycles. The high capacitance and good cyclability of the NCNTs as a supercapacitor electrode material can be attributed to the pseudo-Faradic capacitance and improved hydrophility contributed by the nitrogen functional groups and the core-shell structure of the NCNTs, respectively.

Key words: Carbon nanotubes, Nitrogen doping, Polyaniline, Supercapacitor