物理化学学报 >> 2016, Vol. 32 >> Issue (7): 1634-1638.doi: 10.3866/PKU.WHXB201605111

论文 上一篇    下一篇

石墨烯氧化过程中的热分析-质谱以及脉冲热分析方法研究

张恒1,2,于惠梅1,*(),徐朝和1,张明辉1,潘秀红1,高彦峰1,2,*()   

  1. 1 中国科学院上海硅酸盐研究所,上海200050
    2 上海大学材料科学与工程学院,上海200444
  • 收稿日期:2016-04-01 发布日期:2016-07-08
  • 通讯作者: 于惠梅,高彦峰 E-mail:huimeiyu@mail.sic.ac.cn;yfgao@shu.edu.cn
  • 基金资助:
    国家自然科学基金(51325203);国家自然科学基金(51472263);上海材料基因项目(14DZ2261200);上海市无机非金属材料分析测试表征专业技术服务平台(14DZ2292900);上海市青年科技英才扬帆计划(16YF1413100);中国科学院上海硅酸盐研究所科技创新项目(Y37ZC4143G)

A Study of Graphene Oxidation Using Thermal Analysis-Mass Spectrometry Combined with Pulse Thermal Analysis

Heng ZHANG1,2,Hui-Mei YU1,*(),Chao-He XU1,Ming-Hui ZHANG1,Xiu-Hong PAN1,Yan-Feng GAO1,2,*()   

  1. 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
    2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
  • Received:2016-04-01 Published:2016-07-08
  • Contact: Hui-Mei YU,Yan-Feng GAO E-mail:huimeiyu@mail.sic.ac.cn;yfgao@shu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51325203);the National Natural Science Foundation of China(51472263);Shanghai Materials Genome Project, China(14DZ2261200);Shanghai Technical Platform for Testing and Characterization on Inorganic Materials, China(14DZ2292900);Shanghai Sailing Program, China(16YF1413100);Program of the Innovative Fund of Shanghai Institute of Ceramics, Chinese Academy of Science(Y37ZC4143G)

摘要:

本文由氧化石墨烯通过水热法制备直接获得石墨烯。采用热重-差热分析方法检测了石墨烯受热过程中的质量变化和氧化温度。利用热分析-质谱联用技术在400-650 ℃温度区间得到了水和二氧化碳正离子质谱峰,这说明石墨烯氧化过程中的质量损失是由羟基水和二氧化碳脱除造成的。同时,还采用非等温热分析动力学方法,利用5、10、15 ℃·min-1三种不同升温速率获得了石墨烯材料在空气气氛下的热分析动力学参数。通过Kissinger方法计算出石墨烯氧化过程中的活化能(Ea)和指前因子的对数(lg(A/s-1))分别为155.11 kJ·mol-1和6.90。利用Ozawa-Flynn-Wall (FWO)方法还建立了活化能和指前因子与反应转化率之间的关系。基于以上研究结果,本工作将对石墨烯在热界面、导热和先进复合材料等领域的应用提供参考价值。

关键词: 动力学分析, 石墨烯, 热重-差热-质谱分析, 脉冲热分析, 逸出气体

Abstract:

In the present work, graphene samples were obtained from graphene oxide (GO) by a direct hydrothermal method, using thermogravimetry-differential thermal analysis to ascertain changes in mass as well as the oxidization temperature. Thermal analysis-mass spectrometry was also used to assess the generation of H2O+ (m/z = 18) and CO2+ (m/z = 44) ions over the temperature range of 400-650 ℃. On the basis of the resulting data, the mass loss of the GO during the oxidation process is attributed to the loss of H2O and CO2. The thermal kinetics of graphene under ambient air were also studied at heating rates of 5, 10, and 15 ℃·min-1. The activation energy (Ea) and logarithm of pre-exponential factor (lg(A/s-1)) values calculated by the Kissinger method were 155.11 kJ·mol-1 and 6.90. The dependence of Ea and lgA on the extent of conversion,α, were also calculated, using the Ozawa-Flynn-Wall (FWO) method. The results of this work provide a frame of reference for the use of graphene in thermal applications, such as in thermal interface and thermal conductive materials, advanced composites and materials synthesis.

Key words: Kinetic analysis, Graphene, TG-DTA-MS, Pulse thermal analysis, Evolved gas