物理化学学报 >> 2023, Vol. 39 >> Issue (6): 2212010.doi: 10.3866/PKU.WHXB202212010

所属专题: S型光催化剂

综述 上一篇    下一篇

S型异质结H2O2光催化剂的研究进展

张珂瑜, 李云锋(), 袁仕丹, 张洛红(), 王倩   

  • 收稿日期:2022-12-05 录用日期:2023-01-25 发布日期:2023-02-16
  • 通讯作者: 李云锋,张洛红 E-mail:liyf377@nenu.edu.cn;zhanglh@xpu.edu.cn

Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production

Keyu Zhang, Yunfeng Li(), Shidan Yuan, Luohong Zhang(), Qian Wang   

  • Received:2022-12-05 Accepted:2023-01-25 Published:2023-02-16
  • Contact: Yunfeng Li, Luohong Zhang E-mail:liyf377@nenu.edu.cn;zhanglh@xpu.edu.cn

摘要:

随着现代经济和工业的快速发展,传统化石能源的过度开发和消耗造成了日益严重的环境污染和能源危机,极大地威胁着我们的健康和生活。我们需要开发新的可持续技术来解决日益恶化的环境和能源问题。太阳能作为一种绿色、可持续的清洁能源,在过去几十年中受到了广泛的关注。因此,开发和利用太阳能对解决当前面临的问题具有重要意义。半导体光催化技术是一种太阳能驱动的半导体材料表面催化反应过程,可利用太阳能并将其转化为其他能源,用于进一步的能量存储和应用。目前,制备高效稳定的光催化剂仍然是一个巨大的挑战。最近,为了解决传统异质结光催化剂电荷转移过程中的缺点和不足,一种新型梯形(S型)异质结概念被首次提出。S型异质结不仅有效地解决了电荷转移问题,实现了载流子的快速分离,而且保留了光催化体系最强的氧化还原能力,提高其光催化性能。到目前为止,各种S型异质结已被开发并应用于太阳能转化可用化学燃料领域以减少化石燃料的使用。此外,S型异质结也可用于降解污染物,以减少化石燃料的消耗所造成对环境恶化的影响。过氧化氢(H2O2)作为一种有效、多用途、绿色的氧化剂,已应用于诸多领域,包括污染物净化、医疗消毒和化学合成。它还可以用作燃料电池的高密度能量载体,仅以水和氧作为副产物。光催化技术提供了一种低成本、环保且安全的方法来生产H2O2,并只需要太阳能、H2O和气态氧作为原料。本文综述了用于光催化生成H2O2的新型S型异质结,包括g-C3N4基S型异质结、硫化物基S型异质结、TiO2基S型异质结和ZnO基S型异质结等,并讨论了光催化生成H2O2的主要原理和S型异质结的形成机理。此外,本文总结了S型异质结的一些有效的先进表征方法。最后,根据目前的研究进展,确定了未来研究所面临的挑战和可能的发展方向,为设计开发用于制备H2O2的高性能光催化剂提供了新的途径。

关键词: 光催化, S型异质结, H2O2制备, 电荷转移

Abstract:

Rapid industrialization throughout the 20th and 21st centuries has led to the excessive consumption of fossil fuels to satisfy global energy demands. The dominant use of these fuel sources is the main cause of the ever-increasing environmental issues that greatly threaten humanity. Therefore, the development of renewable energy sources is fundamental to solving environmental issues. Solar energy has received widespread attention over the past decades as a green and sustainable energy source. Solar radiation-induced photocatalytic processes on the surface of semiconductor materials are able to convert solar energy into other energy sources for storage and further applications. However, the preparation of highly efficient and stable photocatalysts remains challenging. Recently, a new step-scheme (S-scheme) carrier migration mechanism was reported that solves the drawbacks of carrier migration in conventional heterojunction photocatalysts. The S-scheme heterojunction not only effectively solves the carrier migration problem and achieves fast separation but also preserves the powerful redox abilities and improves the catalytic performance of the photocatalytic system. To date, various S-scheme heterojunctions have been developed and employed to convert solar energy into useful chemical fuels to decrease the reliance on fossil fuels. Furthermore, these systems can also be used to degrade pollutants and reduce the harmful impact on the environment associated with the consumption of fossil fuels, including H2 evolution, pollutant degradation, and the reduction of CO2. H2O2 has been used as an effective, multipurpose, and green oxidizing agent in many applications including pollutant purification, medical disinfection, and chemical synthesis. It has also been used as a high-density energy carrier for fuel cells, with only water and oxygen produced as by-products. Photocatalytic technology provides a low-cost, environmentally friendly, and safe way to produce H2O2, requiring only solar energy, H2O, and O2 gas as raw materials. This paper reviews new S-scheme heterojunction designs for photocatalytic H2O2 production, including g-C3N4-, sulfide-, TiO2-, and ZnO-based S-scheme heterojunctions. The main principles of photocatalytic H2O2 production and the formation mechanism of the S-scheme heterojunction are also discussed. In addition, effective advanced characterization methods for S-scheme heterojunctions have been analyzed. Finally, the challenges that need to be addressed and the direction of future research are identified to provide new methods for the development of high-performance photocatalysts for H2O2 production.

Key words: Photocatalysis, S-scheme heterojunction, H2O2 generation, Charge transfer