Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1907021.doi: 10.3866/PKU.WHXB201907021
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Review • Previous Articles Next Articles
Shuchen Zhang,Na Zhang,Jin Zhang*()
Received:
2019-07-04
Accepted:
2019-08-01
Published:
2019-08-29
Contact:
Jin Zhang
E-mail:jinzhang@pku.edu.cn
Supported by:
Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1907021. doi: 10.3866/PKU.WHXB201907021
Fig 3
Structure controlled growth of CNTs using catalysts. (a) relationship between catalysts and CNTs; (b) lifetime of catalysts for length of CNTs 25; (c) size of catalysts for diameter of CNTs 24 (Adapted from American Chemical Society); (d) state of catalysts for chirality of catalysts 58 (Adapted from Oxford University Press); (e) structure matching 53 and (f) symmetry matching 27; (g) screw dislocation growth mechanism for CNTs 59; (h) kinetic growth mode on solid catalysts 60"
Fig 5
Progress in CNTs solution separated method: (a) general process to realize CNTs separation; (b) commercial CNTs solution with single chirality; (c) comparison on different separation methods; (d) comparison on different molecular; (e) separation methods developed by amplifying difference between CNTs; (f) different molecular design to separate CNTs."
Fig 6
Different CNTs aggregates. (a) Horizontal CNTs array using "Trojan" catalyst 38 (Adapted from Springer Nature); (b) CNTs vertical array (top) 39 and super-aligned CNTs array to fabricate fibers (bottom) 68 (Adapted from American Chemical Society); (c) CNTs film with different colors 69 (Adapted from American Chemical Society); (d) CNT sponges (top) 70 (Adapted from American Chemical Society) and aerogels (bottom) 71 (Adapted from American Chemical Society)."
Fig 8
Different characterizations for CNTs. (a) STM 79 (Adapted from Springer Nature); (b) TEM 80 (Adapted from Springer Nature); (c) UV-Vis absorption spectra 63 (Adapted from Science); (d) Fluorescence spectra 81 (Adapted from Science); (e) Resonance Raman spectra and Katarua-plot 82 (Adapted from Wiley); (f) Resonance Rayleigh scattering spectra 83 (Adapted from American Chemical Society)."
Fig 9
Exploration on CNTs killer applications. (a) Different kinds of commercial CNTs products for different applications; (b) Journal publications in Web of Science according to the key words "carbon nanotubes, applications" and "carbon nanotubes, growth", respectively. (c) FET for integrated circuit (left) 8 (Adapted from Science) and TFTs (right) 40 (Adapted from Springer Nature)."
1 |
Iijima S. Nature 1991, 354, 56.
doi: 10.1038/354056a0 |
2 |
Peng B. ; Locascio M. ; Zapol P. ; Li S. ; Mielke S. L. ; Schatz G. C. ; Espinosa H. D. Nat. Nanotechnol. 2008, 3, 626.
doi: 10.1038/nnano.2008.211 |
3 |
Jin S. H. ; Dunham S. N. ; Song J. ; Xie X. ; Kim J. H. ; Lu C. ; Islam A. ; Du F. ; Kim J. ; Felts J. ; et al A. Nat. Nanotechnol. 2013, 8, 347.
doi: 10.1038/nnano.2013.56 |
4 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
5 |
Baughman R. H. ; Zakhidov A. A. ; de Heer W. A Science 2002, 297, 787.
doi: 10.1126/science.1060928 |
6 |
Chou T. W. ; Gao L. ; Thostenson E. T. ; Zhang Z. ; Byun J. H Compos. Sci. Technol. 2010, 70, 1.
doi: 10.1016/j.compscitech.2009.10.004 |
7 |
De Volder M. F. L. ; Tawfick S. H. ; Baughman R. H. ; Hart A. J Science 2013, 339, 535.
doi: 10.1126/science.1222453 |
8 |
Qiu C. ; Zhang Z. ; Xiao M. ; Yang Y. ; Zhong D. ; Peng L. M Science 2017, 355, 271.
doi: 10.1126/science.aaj1628 |
9 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
10 |
Franklin A. D. ; Luisier M. ; Han S. J. ; Tulevski G. ; Breslin C. M. ; Gignac L. ; Lundstrom M. S. ; Haensch W Nano Lett. 2012, 12, 758.
doi: 10.1021/nl203701g |
11 |
An K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bae D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater. 2001, 11, 387.
doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G |
12 |
Sotowa C. ; Origi G. ; Takeuchi M. ; Nishimura Y. ; Takeuchi K. ; Jang I. Y. ; Kim Y. J. ; Hayashi T. Kim Y A., Endo M., et al. ChemSusChem 2008, 1, 911.
doi: 10.1002/cssc.200800170 |
13 |
Niu C. ; Sichel E. K. ; Hoch R. ; Moy D. ; Tennent H Appl. Phys. Lett. 1997, 70, 1480.
doi: 10.1063/1.118568 |
14 |
Kim P. ; Shi L. ; Majumdar A. ; McEuen P. L Phys. Rev. Lett. 2001, 87, 215502.
doi: 10.1103/PhysRevLett.87.215502 |
15 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
16 |
Franklin A. D Science 2015, 349, 6249.
doi: 10.1126/science.aab2750 |
17 |
Dresselhaus M. S. ; Dresselhaus G. ; Saito R Carbon 1995, 33, 883.
doi: 10.1016/0008-6223(95)00017-8 |
18 |
Chen Y. ; Zhang J Acc. Chem. Res. 2014, 47, 2273.
doi: 10.1021/ar400314b |
19 |
Chen Y. ; Zhang Y. ; Hu Y. ; Kang L. ; Zhang S. ; Xie H. ; Liu D. ; Zhao Q. ; Li Q. ; Zhang J Adv. Mater. 2014, 26, 5898.
doi: 10.1002/adma.201400431 |
20 |
Zhang R. ; Zhang Y. ; Wei F Acc. Chem. Res. 2017, 50, 179.
doi: 10.1021/acs.accounts.6b00430 |
21 |
Wang H. ; Yuan Y. ; Wei L. ; Goh K. ; Yu D. ; Chen Y Carbon 2015, 81, 1.
doi: 10.1016/j.carbon.2014.09.063 |
22 |
Yang F. ; Wang X. ; Li M. ; Liu X. ; Zhao X. ; Zhang D. ; Zhang Y. ; Yang J. ; Li Y Acc. Chem. Res. 2016, 49, 606.
doi: 10.1021/acs.accounts.5b00485 |
23 |
Li Y. ; Kim W. ; Zhang Y. ; Rolandi M. ; Wang D. ; Dai H. J Phys. Chem. B 2001, 105, 11424.
doi: 10.1021/jp012085b |
24 |
An L. ; Owens J. M. ; McNeil L. E. ; Liu J J. Am. Chem. Soc. 2002, 124, 13688.
doi: 10.1021/ja0274958 |
25 |
Zhang R. ; Zhang Y. ; Zhang Q. ; Xie H. ; Qian W. ; Wei F ACS Nano 2013, 7, 6156.
doi: 10.1021/nn401995z |
26 |
Kang L. ; Zhang S. ; Li Q. ; Zhang J J. Am. Chem. Soc. 2016, 138, 6727.
doi: 10.1021/jacs.6b03527 |
27 |
Zhang S. ; Kang L. ; Wang X. ; Tong L. ; Yang L. ; Wang Z. ; Qi K. ; Deng S. ; Li Q. ; Bai X. ; et al Nature 2017, 543, 234.
doi: 10.1038/nature21051 |
28 |
Moisala A. ; Nasibulin A. G. ; Brown D. P. ; Jiang H. ; Khriachtchev L. ; Kauppinen E. I Chem. Eng. Sci. 2006, 61, 4393.
doi: 10.1016/j.ces.2006.02.020 |
29 |
Zhang Q. ; Huang J. Q. ; Zhao M. Q. ; Qian W. Z. ; Wei F ChemSusChem 2011, 4, 864.
doi: 10.1002/cssc.201100177 |
30 |
Iijima S. ; Ichihashi T. Nature 1993, 363, 603.
doi: 10.1038/363603a0 |
31 |
Hayashi T. ; Kim Y. A. ; Matoba T. ; Esaka M. ; Nishimura K. ; Tsukada T. ; Endo M. ; Dresselhaus M. S. Nano Lett. 2003, 3, 887.
doi: 10.1021/nl034080r |
32 |
Zhang C. ; Bets K. ; Lee S. S. ; Sun Z. ; Mirri F. ; Colvin V. L. ; Yakobson B. I. ; Hauge R. H. ACS Nano 2012, 6, 6023.
doi: 10.1021/nn301039v |
33 |
Hou P. X. ; Li W. S. ; Zhao S. Y. ; Li G. X. ; Shi C. ; Liu C. ; Cheng H. M. ACS Nano 2014, 8, 7156.
doi: 10.1021/nn502120k |
34 |
Chen Y. ; Shen Z. ; Xu Z. ; Hu Y. ; Xu H. ; Wang S. ; Guo X. ; Zhang Y. ; Peng L. ; Ding F. ; et al Nat. Commun. 2013, 4, 2205.
doi: 10.1038/ncomms3205 |
35 |
Kang L. ; Hu Y. ; Liu L. ; Wu J. ; Zhang S. ; Zhao Q. ; Ding F. ; Li Q. ; Zhang J. Nano Lett. 2015, 15, 403.
doi: 10.1021/nl5037325 |
36 |
Zhang S. ; Tong L. ; Hu Y. ; Kang L. ; Zhang J. J. Am. Chem. Soc. 2015, 137, 8904.
doi: 10.1021/jacs.5b05384 |
37 |
Zhang Q. ; Huang J. Q. ; Qian W. Z. ; Zhang Y. Y. ; Wei F. Small 2013, 9, 1237.
doi: 10.1002/smll.201203252 |
38 |
Hu Y. ; Kang L. ; Zhao Q. ; Zhong H. ; Zhang S. ; Yang L. ; Wang Z. ; Lin J. ; Li Q. ; Zhang Z. ; et al Nat. Commun. 2015, 6, 6099.
doi: 10.1038/ncomms7099 |
39 |
Hata K. ; Futaba D. N. ; Mizuno K. ; Namai T. ; Yumura M. ; Iijima S. Science 2004, 306, 1362.
doi: 10.1126/science.1104962 |
40 |
Sun D. M. ; Timmermans M. Y. ; Tian Y. ; Nasibulin A. G. ; Kauppinen E. I. ; Kishimoto S. ; Mizutani T. ; Ohno Y. Nat. Nanotechnol. 2011, 6, 156.
doi: 10.1038/nnano.2011.1 |
41 |
Du R. ; Zhao Q. ; Zhang N. ; Zhang J. Small 2015, 11, 3263.
doi: 10.1002/smll.201403170 |
42 |
Li Y. L. ; Kinloch I. A. ; Windle A. H. Science 2004, 304, 276.
doi: 10.1126/science.1094982 |
43 |
Liu C. ; Cong H. T. ; Li F. ; Tan P. H. ; Cheng H. M. ; Lu K. ; Zhou B. L. Carbon 1999, 11, 1865.
doi: 10.1016/S0008-6223(99)00196-7 |
44 |
Guo T. ; Nikolaev P. ; Rinzler A. G. ; Tomanek D. ; Colbert D. T. ; Smalley R. E. J. Phys. Chem. 1995, 99, 10694.
doi: 10.1021/acs.energyfuels.7b03144 |
45 |
Zhang X. ; Jiang K. ; Feng C. ; Liu P. ; Zhang L. ; Kong J. ; Zhang T. ; Li Q. ; Fan S. Adv. Mater. 2006, 18, 1505.
doi: 10.1002/adma.200502528 |
46 |
Wang Y. ; Wei F. ; Luo G. ; Yu H. ; Gu G. Chem. Phys. Lett. 2002, 364, 568.
doi: 10.1016/S0009-2614(02)01384-2 |
47 |
Gui X. ; Wei J. ; Wang K. ; Cao A. ; Zhu H. ; Jia Y. ; Shu Q. ; Wu D. Adv. Mater. 2010, 22, 617.
doi: 10.1002/adma.200902986 |
48 |
Arnold M. S. ; Green A. A. ; Hulvat J. F. ; Stupp S. I. ; Hersam M. C. Nat. Nanotechnol. 2006, 1, 60.
doi: 10.1038/nnano.2006.52 |
49 |
Liu H. ; Nishide D. ; Tanaka T. ; Kataura H. Nat. Commun. 2011, 2, 309.
doi: 10.1038/ncomms1313 |
50 |
Khripin C. Y. ; Fagan J. A. ; Zheng M. J. Am. Chem. Soc. 2013, 135, 6822.
doi: 10.1021/ja402762e |
51 |
Lolli G. ; Zhang L. ; Balzano L. ; Sakulchaicharoen N. ; Tan Y. ; Resasco D. E. J. Phys. Chem. B 2006, 110, 2108.
doi: 10.1021/jp056095e |
52 |
Wang H. ; Wei L. ; Ren F. ; Wang Q. ; Pfefferle L. D. ; Haller G. L. ; Chen Y. ACS Nano 2012, 7, 614.
doi: 10.1021/nn3047633 |
53 |
Yang F. ; Wang X. ; Zhang D. ; Yang J. ; Luo D. ; Xu Z. ; Wei J. ; Wang J. Q. ; Xu Z. ; Peng F. ; et al Nature 2014, 510, 522.
doi: 10.1038/nature13434 |
54 |
Wang Z. ; Zhao Q. ; Tong L. ; Zhang J. J. Phys. Chem. C 2017, 121, 27655.
doi: 10.1021/acs.jpcc.7b06653 |
55 |
Zhou W. ; Zhan S. ; Ding L. ; Liu J. J. Am. Chem. Soc. 2012, 134, 14019.
doi: 10.1021/ja3038992 |
56 |
Zhang G. ; Qi P. ; Wang X. ; Lu Y. ; Li X. ; Tu R. ; Bangsaruntip S. ; Mann D. ; Zhang L. ; Dai H. Science 2006, 314, 974.
doi: 10.1126/science.1133781 |
57 |
Zhang S. ; Wang X. ; Yao F. ; He M. ; Lin D. ; Ma H. ; Sun Y. ; Zhao Q. ; Liu K. ; Ding F. ; et al Chem 2019, 5, 1182.
doi: 10.1016/j.chempr.2019.02.012 |
58 |
Zhang S. ; Tong L. ; Zhang J. Nat. Sci. Rev. 2017, 5, 310.
doi: 10.1093/nsr/nwx080 |
59 |
Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2506.
doi: 10.1073/pnas.0811946106 |
60 |
Artyukhov V. I. ; Penev E. S. ; Yakobson B. I. Nat. Commun. 2014, 5, 4892.
doi: 10.1038/ncomms5892 |
61 |
Yao Y. ; Feng C. ; Zhang J. ; Liu Z. Nano Lett. 2009, 9, 1673.
doi: 10.1021/nl900207v |
62 |
Liu J. ; Wang C. ; Tu X. ; Liu B. ; Chen L. ; Zheng M. ; Zhou C. Nat. Commun. 2012, 3, 1199.
doi: 10.1038/ncomms2205 |
63 |
O'connell M. J. ; Bachilo S. M. ; Huffman C. B. ; Moore V. C. ; Strano M. S. ; Haroz E. H. ; Rialon1 K. L. ; Boul1 P. J. ; Noon W. H. ; Kittrell1 C. ; et al Science 2002, 297, 593.
doi: 10.1126/science.1072631 |
64 |
Ortiz-Acevedo A. ; Xie H. ; Zorbas V. ; Sampson W. M. ; Dalton A. B. ; Baughman R. H. ; Draper R. K. ; Musselman I. H. ; Dieckmann G. R. J. Am. Chem. Soc. 2005, 127, 9512.
doi: 10.1021/ja050507f |
65 |
Nish A. ; Hwang J. Y. ; Doig J. ; Nicholas R. J. Nat. Nanotechnol. 2007, 2, 640.
doi: 10.1038/nnano.2007.290 |
66 |
D Franklin A. D. Nature 2013, 498, 443.
doi: 10.1038/498443a |
67 |
Cao Q. ; Han S. J. ; Tulevski G. S. ; Zhu Y. ; Lu D. D. ; Haensch W. Nat. Nanotechnol. 2013, 8, 180.
doi: 10.1038/nnano.2012.257 |
68 |
Kuznetsov A. A. ; Fonseca A. F. ; Baughman R. H. ; Zakhidov A. A. ACS Nano 2011, 5, 985.
doi: 10.1021/nn102405u |
69 |
Liao Y. ; Jiang H. ; Wei N. ; Laiho P. ; Zhang Q. ; Khan S. A. ; Kauppinen E. I. J. Am. Chem. Soc. 2018, 140, 9797.
doi: 10.1021/jacs.8b05151 |
70 |
Shan C. ; Zhao W. ; Lu X. L. ; O'Brien D. J. ; Li Y. ; Cao Z. ; Suhr J. Nano Lett. 2013, 13, 5514.
doi: 10.1021/nl403109g |
71 |
Hough L. A. ; Islam M. F. ; Hammouda B. ; Yodh A. G. ; Heiney P. A. Nano Lett. 2006, 6, 313.
doi: 10.1021/nl051871f |
72 |
Kim K. H. ; Oh Y. ; Islam M. F. Adv. Funct. Mater. 2013, 23, 377.
doi: 10.1002/adfm.201201055 |
73 |
Du R. ; Wu J. ; Chen L. ; Huang H. ; Zhang X. ; Zhang J. Small 2014, 10, 1387.
doi: 10.1002/smll.201302649 |
74 |
Wei F. ; Zhang Q. ; Qian W. Z. ; Yu H. ; Wang Y. ; Luo G. H. ; Wang D. Z. Powder Technol. 2008, 183, 10.
doi: 10.1016/j.powtec.2007.11.025 |
75 |
Jia X. ; Wei F. Topics Curr. Chem. 2017, 375, 18.
doi: 10.1007/s41061-017-0102-2 |
76 |
He M. ; Magnin Y. ; Amara H. ; Jiang H. ; Cui H. ; Fossard F. ; Castan A. ; Kauppinen E. ; Loiseau A. ; Bichara C. Carbon 2017, 113, 231.
doi: 10.1016/j.carbon.2016.11.057 |
77 |
Magnin Y. ; Amara H. ; Ducastelle F. ; Loiseau A. ; Bichara C. Science 2018, 362, 212.
doi: 10.1126/science.aat6228 |
78 |
Hussain A. ; Liao Y. ; Zhang Q. ; Ding E. X. ; Laiho P. ; Ahmad S. ; Wei N. ; Tian Y. ; Jiang H. ; Kauppinen E. I. Nanoscale 2018, 10, 9752.
doi: 10.1039/C8NR00716K |
79 |
Wilder J. W. ; Venema L. C. ; Rinzler A. G. ; Smalley R. E. ; Dekker C. Nature 1998, 391, 59.
doi: 10.1038/34139 |
80 |
Hashimoto A. ; Suenaga K. ; Gloter A. ; Urita K. ; Iijima S. Nature 2004, 430, 870.
doi: 10.1038/nature02817 |
81 |
Bachilo S. M. ; Strano M. S. ; Kittrell C. ; Hauge R. H. ; Smalley R. E. ; Weisman R. B. Science 2002, 298, 2361.
doi: 10.1126/science.1078727 |
82 |
Araujo P. T. ; Jorio A. Phys. Status Solidi B 2008, 245, 2201.
doi: 10.1002/pssb.200879625 |
83 |
Joh D. Y. ; Herman L. H. ; Ju S. Y. ; Kinder J. ; Segal M. A. ; Johnson J. N. ; Chan G. ; Park J. Nano Lett. 2010, 1, 1.
doi: 10.1021/nl1012568 |
84 |
Tans S. J. ; Verschueren A. R. ; Dekker C. Nature 1998, 393, 49.
doi: 10.1038/29954 |
85 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P. Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
86 |
Shulaker M. M. ; Hills G. ; Patil N. ; Wei H. ; Chen H. Y. ; Wong H. S. P. ; Mitra S. Nature 2013, 501, 526.
doi: 10.1038/nature12502 |
[1] | Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304004-. |
[2] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[3] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[6] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[7] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[8] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[9] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[10] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[11] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[12] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[13] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[14] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[15] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
|