Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (8): 1911035.doi: 10.3866/PKU.WHXB201911035
• Article • Previous Articles Next Articles
Wenyuan Wang, Jiefu Zhang, Zhe Li, Xiang Shao()
Received:
2019-11-19
Accepted:
2019-12-27
Published:
2020-05-19
Contact:
Xiang Shao
E-mail:shaox@ustc.edu.cn
Supported by:
Wenyuan Wang, Jiefu Zhang, Zhe Li, Xiang Shao. Atomic Structure and Adsorption Property of the Singly Dispersed Au/Cu(111) Surface Alloy[J]. Acta Physico-Chimica Sinica 2020, 36(8), 1911035. doi: 10.3866/PKU.WHXB201911035
Fig 1
Preparation of Au/Cu(111) single atomic alloy. (a) STM image of clean Cu(111) surface, inset is the atomic resolution image. (b) STM image of 0.1 ML Au/Cu(111) film, the inset is the magnified image of the film, showing the triangular reconstruction. (c, d) Au/Cu(111) single atomic alloy formed after annealing of the thin film. The inset shows the profiles along the blue and green lines in (b) and (c), respectively. The white arrows in (c) point to the Au atoms gathered at the step edge while the black arrows in (d) point to the singly dispersed Au atoms on the surface. Scanning conditions: (a) I = 0.48 nA, U = 0.70 V, inset: I = 8.0 nA, U = ? 0.015 V; (b) I = 1.0 nA, U = ? 0.67 V; (c) I = 0.57 nA, U = ? 0.07 V: (d) I = 1.7 nA, U = ? 0.031 V."
Fig 2
Varying number of the surface and subsurface doped Au atoms against annealing time. STM results of annealing at 550 K for (a) 15 min, (b) 45 min and (c) 75 min. The circles in blue and green highlight the monoatomic species with different brightness. Scanning conditions: (a) I = 1.7 nA, U = ?0.031 V; (b) I = 1.9 nA, U = ? 0.044 V; (c) I = 8.0 nA, U = ?0.33 V."
Fig 3
High resolution images of the doped Au atoms in the skin and subsurface layers. (a) Atomic resolved STM image showing Cu atoms (bright spots), Au-1 atoms (blue circle) and Au-2 atoms (green) at the meantime. (b) and (c) show the amplified images of the doped Au-1 and Au-2 atoms with the lattice grids of Cu(111) marked, respectively. (d) shows the section lines passing through the subsurface Au (green), surface Au (blue) and Cu (black) atoms along the [1${\rm{\bar 1}}$0] direction. Scanning conditions: I = 2.2 nA, U = ?0.138 V. "
Fig 4
dI/dV spectra of different sites on the Au-doped surface. (a, c) dI/dV spectra obtained at Cu atoms (black line), surface Au atoms (blue line) and subsurface Au atoms (green line) on Au/Cu(111) monatomic alloy surface. (b) and (d) are the difference spectra of doped Au atoms subtracting that of Cu(111), which are obtained from the spectra in (a) and (c), respectively. Notice the STM is different for collecting the spectra in (a) and (c)."
Fig 5
Adsorption results of exposing the Au/Cu(111) single atomic alloy to different amounts of CO at 100 K. (a) 0.05 L, (b) 0.4 L, (c) 0.6 L, (d) 1.2 L. Scanning conditions: (a) I = 1.0 nA, U = 0.10 V; (b) I = 1.6 nA, U = 0.04 V; (c) I = 0.44 nA, U = ?0.31 V; (d) I = 1.0 nA, U = 0.10 V. The black circles in figures (a) and (d) mark the doped Au atoms on the surface. The dotted lines in (b) mark the direction [11${\rm{\bar 2}}$] of the densely arranged CO molecules. The white oval in (c) highlights a localized two-dimensional ordered structure of CO."
Fig 6
Atomic resolution images of the Au/Cu(111) single atomic alloy surface with different amounts of CO at 100 K. (a) 0.05 L of CO. The blue, green and white circles mark the surface Au atom, the subsurface Au atom and the single CO molecule, respectively. The black arrows mark the direction of CO migration. The white line segment marks the direction of the closest packed Cu atoms, i.e. 10. (b) 1 L of CO, forming a full-layer adsorption structure on the surface. (c) and (d) show the STM images of different adsorption defects and corresponding structure models, respectively. For the ball models in (d), blue, yellow and red balls correspond to Cu, Au atoms and CO molecules, respectively. Scanning conditions: (a) I = 8.0 nA, U = ?0.008 V; (b, c) I = 1.0 nA, U = 0.15 V."
Fig 7
Preparation and STM imaging of the Cu@Au(111) surface alloy. (a) Clean Au(111) surface. Inset shows the atomic resolution image. (b) The surface after depositing 0.15 ML of Cu at room temperature. (c) Alloyed Cu/Au(111) surface after annealing of the film in (b), showing no recognizable added Cu island on the surface. (d) Atomically resolved image of the Cu/Au(111) surface alloy. Blue ovals mark the doped Cu atoms which aggregate at the subsurface region. (e) and (f) are the STM images of the Cu/Au(111) alloyed surface after exposing about 3L of CO at 77 K. The white arrows point to the surface adsorbed CO molecules, the dashed black arrow indicates the migration direction of CO under the interaction of the Tip. Scanning conditions: (a) I = 1.0 nA, U = ?0.62 V; inset, I =8.0 nA, U = ?0.19 V; (b) I = 0.11 nA, U = 0.76 V; (c) I = 0.63 nA, U = ?0.54 V; (d) I = 8.0 nA, U = ?0.02 V; (e) I = 1.8 nA, U = ?0.02 V; (f) I = 0.24 nA, U = ?0.30 V."
1 |
Kim D. ; Resasco J. ; Yu Y. ; Asiri A. M. ; Yang P. D. Nat. Commun. 2014, 5, 4948.
doi: 10.1038/ncomms5948 |
2 |
Liu X. Y. ; Wang A. Q. ; Zhang T. ; Su D. S. ; Mou C. Y. Catal. Today 2011, 160, 103.
doi: 10.1016/j.cattod.2010.05.019 |
3 |
Haruta M. Catal. Today 1997, 36, 153.
doi: 10.1016/S0920-5861(96)00208-8 |
4 |
Thomas J. M. ; Saghi Z. ; Gai P. L. Top. Catal. 2011, 54, 588.
doi: 10.1007/s11244-011-9677-y |
5 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
6 |
Ranocchiari M. ; Lothschutz C. ; Grolimund D. ; van Bokhoven J. A. Proc. Roy. Soc. A 2012, 468, 1985.
doi: 10.1098/rspa.2012.0078 |
7 |
Flytzani-Stephanopoulos M. ; Gates B. C. Annu. Rev. Chem. Biomol. 2012, 3, 545.
doi: 10.1146/annurev-chembioeng-062011-080939 |
8 |
Chen J. G. ; Menning C. A. ; Zellner M. B. Surf. Sci. Rep. 2008, 63, 201.
doi: 10.1016/j.surfrep.2008.02.001 |
9 |
Greeley J. ; Mavrikakis M. Nat. Mater. 2004, 3, 810.
doi: 10.1038/nmat1223 |
10 |
Rodriguez J. Surf. Sci. Rep. 1996, 24, 223.
doi: 10.1016/0167-5729(96)00004-0 |
11 |
Alexeev O. S. ; Gates B. C. Ind. Eng. Chem. Res. 2003, 42, 1571.
doi: 10.1021/ie020351h |
12 |
Ponec V. Appl. Catal. A 2001, 222, 31.
doi: 10.1016/S0926-860X(01)00828-6 |
13 |
Huang L. ; Shao X. Acta Phys. -Chim. Sin. 2018, 34, 1390.
doi: 10.3866/PKU.WHXB201804191 |
黄丽丽; 邵翔. 物理化学学报, 2018, 34, 1390.
doi: 10.3866/PKU.WHXB201804191 |
|
14 |
Haruta M. ; Yamada N. ; Kobayashi T. ; Iijima S. J. Catal. 1989, 115, 301.
doi: 10.1016/0021-9517(89)90034-1 |
15 |
Haruta M. ; Tsubota S. ; Kobayashi T. ; Kageyama H. ; Genet M. J. ; Delmon B. J. Catal. 1993, 144, 175.
doi: 10.1006/jcat.1993.1322 |
16 |
Haruta M. Catal. Today 1997, 36, 153.
doi: 10.1016/S0920-5861(96)00208-8 |
17 |
Grisel R. J. H. ; Kooyman P. J. ; Nieuwenhuys B. E. J. Catal. 2000, 191, 430.
doi: 10.1006/jcat.1999.2787 |
18 |
Linke R. ; Schneider U. ; Busse H. ; Becker C. ; Schröder U. ; Castro G. R. ; Wandelt K. Surf. Sci. 1994, 307, 407.
doi: 10.1016/0039-6028(94)90427-8 |
19 |
Qi Y. ; Bian T. ; Choi S. I. ; Jiang Y. ; Jin C. ; Fu M. ; Zhang H. ; Yang D. Chem. Commun. 2014, 50, 560.
doi: 10.1039/c3cc48061e |
20 |
Liu X. ; Wang A. ; Wang X. ; Mou C. Y. ; Zhang T. Chem. Commun. 2008, 3187
doi: 10.1039/b804362k |
21 |
Liu X. ; Wang A. ; Li L. ; Zhang T. ; Mou C. Y. ; Lee J. F. J. Catal. 2011, 278, 288.
doi: 10.1016/j.jcat.2010.12.016 |
22 |
Chimentão R. J. ; Medina F. ; Fierro J. L. G. ; Llorca J. ; Sueiras J. E. ; Cesteros Y. ; Salagre P. J. Mater. Chem. A-Chem. 2007, 274, 159.
doi: 10.1016/j.molcata.2007.05.008 |
23 |
Della Pina C. ; Falletta E. ; Rossi M. J. Catal. 2008, 260, 384.
doi: 10.1016/j.jcat.2008.10.003 |
24 |
Kyriakou G. ; Boucher M. B. ; Jewell A. D. ; Lewis E. A. ; Lawton T. J. ; Baber A. E. ; Tierney H. L. ; Stephanopoulos M. F. ; Sykes E. C. H. Science 2012, 335, 1209.
doi: 10.1126/science.1215864 |
25 |
Marcinkowski M. ; Jewell A. D. ; Stamatakis M. ; Boucher M. B. ; Lewis E. A. ; Murphy C. J. ; Kyriakou G. ; Sykes E. C. H. Nat. Mater. 2013, 12, 523.
doi: 10.1038/nmat3620 |
26 |
Baber A. E. ; Tierney H. L. ; Sykes E. C. H. ACS Nano 2010, 4, 1637.
doi: 10.1021/nn901390y |
27 |
Han P. ; Axnanda S. ; Lyubinetsky I. ; Goodman D. W. J. Am. Chem. Soc. 2007, 129, 14355.
doi: 10.1021/ja074891n |
28 |
Shi H. X. ; Wang W. Y. ; Li Z. ; Wang L. ; Shao X. Chin. J. Chem. Phys. 2017, 30, 443.
doi: 10.1063/1674-0068/30/cjcp1704078 |
29 |
Umezawa K. ; Nakanishi S. Phys. Rev. B. 2000, 63, 035402.
doi: 10.1103/PhysRevB.63.035402 |
30 |
Wang L. ; Li P. ; Shi H. X. ; Li Z. Y. ; Wu K. ; Shao X. J. Phys. Chem. C. 2017, 121, 7977.
doi: 10.1021/acs.jpcc.7b00938 |
31 |
Zhao X. Y. ; Liu P. ; Hrbek J. ; Rodriguez J. A. ; Pérez M. Surf. Sci. 2005, 592, 25.
doi: 10.1016/j.susc.2005.06.035 |
32 |
Hwang R. Q. ; Schröder J. ; Günther C. ; Behm R. J. Phys. Rev. Lett. 1991, 67, 3279.
doi: 10.1103/PhysRevLett.67.3279 |
33 |
Brune H. ; Röder H. ; Bromann K. ; Kern K. Thin Solid Films. 1995, 264, 230.
doi: 10.1016/0040-6090(94)05821-0 |
34 |
Wang W. ; Shi H. ; Wang L. ; Li Z. ; Shi H. ; Wu K. ; Shao X. J. Phys. Chem. C. 2018, 122, 19551.
doi: 10.1021/acs.jpcc.8b04783 |
35 |
Meunier I. ; Tréglia G. ; Gay J. M. ; Aufray B. Phys. Rev. B. 1999, 59, 10910.
doi: 10.1103/PhysRevB.59.10910 |
36 |
Castro G. R. ; Doyen G. Surf. Sci. 1994, 307, 384.
doi: 10.1016/0039-6028(94)90423-5 |
37 |
Castro G. R. ; Schneider U. ; Busse H. ; Janssens T. ; Wandelt K. Surf. Sci. 1992, 269, 321.
doi: 10.1016/0039-6028(92)91268-G |
38 |
Besenbacher F. ; Chorkendorff I. ; Clausen B. S. ; Hammer B. ; Molenbroek A. M. ; Nørskov J. K. ; Stensgaard I. Science. 1998, 279, 1913.
doi: 10.1126/science.279.5358.1913 |
39 |
Kim M. J. ; Na H. J. ; Lee K. C. ; Yoob E. A. ; Lee M. Y. J. Mater. Chem. 2003, 13, 1789.
doi: 10.1039/b304006m |
40 |
Liu M. ; Zhou W. ; Wang T. ; Wang D. ; Liu L. ; Ye J. Chem. Commun. 2016, 52, 4694.
doi: 10.1039/c6cc00717a |
41 |
Kuhn M. ; Sham T. K. Phys. Rev. B. 1994, 49, 1647.
doi: 10.1103/PhysRevB.49.1647 |
42 |
Hammer B. J. K. N. ; Nørskov J. K. Surf. Sci. 1995, 343, 211.
doi: 10.1016/0039-6028(96)80007-0 |
43 |
Libisch F. ; Geringer V. ; Subramaniam D. ; Burgdörfer J. ; Morgenstern M. Phys. Rev. B. 2014, 90, 035442.
doi: 10.1103/PhysRevB.90.035442 |
44 |
Chen W. ; Madhavan V. ; Jamneala T. ; Crommie M. F. Phys. Rev. Lett. 1998, 80, 1469.
doi: 10.1103/PhysRevLett.80.1469 |
45 |
Bartels L. ; Meyer G. ; Rieder K. H. Surf. Sci. 1999, 432, 621.
doi: 10.1016/S0039-6028(99)00640-8 |
46 |
Heinrich A. J. ; Lutz C. P. ; Gupta J. A. ; Eigler D. M. Science. 2002, 298, 1381.
doi: 10.1126/science.1076768 |
47 |
Neef M. ; Doll K. Surf. Sci. 2006, 600, 1085.
doi: 10.1016/j.susc.2005.12.036 |
48 |
Li W. ; Kong L. ; Feng B. ; Fu H. ; Li H. ; Zeng X. C. ; Wu K. ; Chen L. Nat. Commun. 2018, 9, 198.
doi: 10.1038/s41467-017-02634-6 |
49 |
Hammer B. ; Morikawa Y. ; Nørskov J. K. Phys. Rev. Lett. 1996, 76, 2141.
doi: 10.1103/PhysRevLett.76.2141 |
50 |
Mavrikakis M. ; Hammer B. ; Nørskov J. K. Phys. Rev. Lett. 1998, 81, 2819.
doi: 10.1103/PhysRevLett.81.2819 |
51 |
Rodriguez J. A. ; Goodman D. W. Science 1992, 257, 897.
doi: 10.1126/science.257.5072.897 |
52 |
Campbell R. A. ; Rodriguez J. A. ; Goodman D. W. Surf. Sci. 1991, 256, 272.
doi: 10.1016/0039-6028(91)90870-X |
53 |
Rodriguez J. A. ; Goodman D. W. J. Phys. Chem. 1991, 95, 4196.
doi: 10.1021/j100164a008 |
54 |
Chen M. S. ; Goodman D. W. Science. 2004, 306, 252.
doi: 10.1126/science.1102420 |
[1] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[2] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[3] | Meijia Xu, Yuchen Zhang, Yifan Zhu, Changlin Li, Zi-Ang Wu, Xiong Zhou, Kai Wu. Active Phase on Oxidized Pd(100) for Low-Temperature Propane Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305033-. |
[4] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[5] | Xuemei Zhou. TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008064-. |
[6] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-. |
[7] | Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033-. |
[8] | Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905084-. |
[9] | Zhichao Huang,Yazhong Dai,Xiaojie Wen,Dan Liu,Yuxuan Lin,Zhen Xu,Jian Pei,Kai Wu. Conformational Switching of Verdazyl Radicals on Au(111) [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907043-. |
[10] | Mingyue WANG,Shijing TAN,Xuefeng CUI,Bing WANG. Introducing Strain in Anatase TiO2(001) Films by Epitaxial Growth [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1412-1421. |
[11] | Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542. |
[12] | Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules [J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277. |
[13] | Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions [J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333. |
[14] | Yeliang ZHAO,Bing WANG. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules [J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1312-1320. |
[15] | Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface [J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365. |
|