Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (12): 2003042.doi: 10.3866/PKU.WHXB202003042
Special Issue: Neural Interfaces
• REVIEW • Previous Articles Next Articles
Liang Zou1,2, Huihui Tian1,*()
Received:
2020-03-19
Accepted:
2020-04-22
Published:
2020-04-27
Contact:
Huihui Tian
E-mail:tianhh@nanoctr.cn
Supported by:
Liang Zou, Huihui Tian. Upconversion Nanoparticles-Mediated Optogenetics for Minimally Invasive Neural Interface[J].Acta Phys. -Chim. Sin., 2020, 36(12): 2003042.
Fig 1
Enhanced upconversion efficiency of different kinds of core-shell UCNPs. The upconversion luminescence (a) and the upconversion spectra (b) of core nanoparticles and core/inert-shell nanoparticles 46; The upconversion luminescence (c) and the upconversion spectra (d) of core/inert-shell nanoparticles and core/active-shell nanoparticles 47; The upconversion luminescence (e) and the upconversion spectra (f) of core/active-shell nanoparticles and dye-sensitized core/active-shell nanoparticles 58."
Fig 3
Modulation of movement behavior in C. elegans by UCNP-mediated NIR optogenetics 62. (a) The C.elegans move fluidly without drastic changes in direction when exposed to NIR light alone (no UCNPs); (b) The C.elegans show a drastic change in direction when exposed to NIR light in the presence of UCNPs; (c) Effect of varying UCNPs concentration on percentage of C.elegans showing reversal phenotype when irradiated with NIR light at 50% duty cycle and peak power 4 W (106 J·cm-2). n = 20 per group; (d) Percentage of C.elegans showing the reversal phenotype upon incubation with UCNPs and subsequent NIR irradiation, along with the controls (untreated C.elegans, C.elegans exposed to NIR light alone, or C. elegans exposed to UCNPs alone). p = 0.0004 between the control and UCNPs + NIR groups. n = 90 per group."
Fig 4
NIR neuromodulation in mice/rats by micro-optrodes containing UCNPs. (a) Schematic of upconversion based neural stimulation and extracellular recording in brains of live animals 64; (b) Representative photograph of the bundle combining a glass UCNPs-Optrode and a metal electrode, which was simultaneously implanted into the visual cortical tissue for upconversion stimulation and electrical recording. Scale bar: 1 mm 64; (c) Raster plots and PSTH (5 ms per bin, 50 trials) showing the temporal correlation between increased spiking activity and NIR illumination in C1V1 animals (30 ms pulse width, 4.4 mW·mm-2). The inset shows typical spiking waveforms 64. (d) Schematic of using NaYF4@NaYF4:Yb/Er@NaYF4 core-shell-shell UCNPs as a transducer to convert NIR irradiation into visible light for inhibiting the activities of neurons expressing eNpHR proteins (top); Power of the emission around 540–570 nm from a device containing UCNPs at various illumination powers of a 980 nm laser (bottom) 67; (e) Representative photograph of the bundle combining a glass UCNPs-based device and a metal electrode with/without 980 nm laser irradiation. Scale bar, 1 mm 67; (f) Raster plots and a PSTH (10 ms/bin, 60 trials) showing the temporal correlation between the decreased spiking activity and the NIR illumination in eNpHR animals (100 ms pulse width, 6 mW·mm-2) 67; (g) Fluorescent images of the operating UCNPs micro-devices (Yb3+-doped) excited by NIR (top). Scale bar, 1 mm. The image of a mouse implanted with a micro-optrode containing UCNPs (bottom). Scale bar, 2 cm 67."
Fig 5
NIR neuromodulation in mice by injecting solution containing UCNPs 68. (a) In vivo experimental scheme for transcranial NIR stimulation of the VTA in anesthetized mice; (b) Confocal images of the VTA after transcranial NIR stimulation under different conditions. Extensive NIR-driven c-Fos (red) expression was observed only in the presence of both UCNPs (blue) and ChR2 expression (labeled with EYFP, green). Scale bars: 100 μm; (c) Percentage of c-Fos-positive neurons within cell population indicated by DAPI (4', 6-diamidino-2-phenylindole), corresponding to the four conditions presented in (B) (n = 3 mice each, F3, 8 = 10.40, P < 0.01); (d) Confocal images of VTA regions at different periods after the injection of silica-coated UCNPs, stained for Iba1 + microglia."
Fig 6
NIR neuromodulation in mice by injecting solution containing lanthanide micro-particles (LMPs) 21. (a) Sites of AAV/LMPs injections (top). Epifluorescence images indicating expression of C1V1-Venus in the mPFC and dorsal striatum (dSTR; middle) and upconversion luminescence from injected LMPs in fixed slices with thicknesses of 100 mm (bottom, illuminated by NIR at a wavelength of 976 nm under a stereomicroscope); (b) Behavior test setup; (c) Locomotor activity of mice under repeated irradiation with 10 ms NIR light pulses at 10 Hz. Red bars indicate the timing of NIR irradiation. Top: injection into the mPFC; bottom: injection into the dSTR. Data are shown as mean ± SEM; *p < 0.05 and ***p < 0.001, unpaired Student's t test."
1 |
Boyden E. S. ; Zhang F. ; Bamberg E. ; Nagel G. ; Deisseroth K. Nat. Neurosci. 2005, 8, 1263.
doi: 10.1038/nn1525 |
2 |
Fenno L. ; Yizhar O. ; Deisseroth K. Annu. Rev. Neurosci. 2011, 34, 389.
doi: 10.1146/annurev-neuro-061010-113817 |
3 |
Deisseroth K. Nat. Methods 2011, 8, 26.
doi: 10.1038/NMETH.F.324 |
4 |
Deisseroth K. Nat. Neurosci. 2015, 18, 1213.
doi: 10.1038/nn.4091 |
5 |
Nagel G. ; Szellas T. ; Huhn W. ; Kateriya S. ; Adeishvili N. ; Berthold P. ; Ollig D. ; Hegemann P. ; Bamberg E. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13940.
doi: 10.1073/pnas.1936192100 |
6 |
Han X. ; Chow B. Y. ; Zhou H. ; Klapoetke N. C. ; Chuong A. ; Rajimehr R. ; Yang A. ; Baratta M. V. ; Winkle J. ; Desimone R. ; Boyden E. S. Front. Syst. Neurosci. 2011, 5, 18.
doi: 10.3389/fnsys.2011.00018 |
7 |
Han X. ; Boyden E. S. PLoS ONE 2007, 2, e299.
doi: 10.1371/journal.pone.0000299 |
8 |
Jacques S. L. Phys. Med. Biol. 2013, 58, 5007.
doi: 10.1088/0031-9155/58/14/5007 |
9 |
Yaroslavsky A. N. ; Schulze P. C. ; Yaroslavsky I. V. ; Schober R. ; Ulrich F. ; Schwarzmaier H. J. Phys. Med. Biol. 2002, 47, 2059.
doi: 10.1088/0031-9155/47/12/305 |
10 |
Zhang F. ; Gradinaru1 V. ; Adamantidis A. R. ; Durand R. ; Airan R. D. ; de-Lecea L. ; Deisseroth K. Nat. Protoc. 2010, 5, 439.
doi: 10.1038/nprot.2009.226 |
11 |
Wu F. ; Stark E. ; Ku P. C. ; Wise K. D. ; Buzsáki G. ; Yoon E. Neuron 2015, 88, 1136.
doi: 10.1016/j.neuron.2015.10.032 |
12 |
McCall J. G. ; Kim T. ; Shin G. ; Huang X. ; Jung Y. H. ; Al-Hasani R. ; Omenetto F. G. ; Bruchas M. R. ; Rogers J. A. Nat. Protoc. 2013, 8, 2413.
doi: 10.1038/nprot.2013.158 |
13 |
Kim T. I. ; McCall J. G. ; Jung Y. H. ; Huang X. ; Siuda E. R. ; Li Y. ; Song J. ; Song Y. M. ; Pao H. A. ; Kim R. H. ; et al Science 2013, 340, 211.
doi: 10.1126/science.1232437 |
14 |
Adamantidis A. R. ; Zhang F. ; Aravanis A. M. ; Deisseroth K. ; de Lecea L. Nature 2007, 450, 420.
doi: 10.1016/S1389-9457(11)70067-3 |
15 | Li Y. M. ; Wang Y. ; Chen H. D. ; Wang Y. J. ; Liu Y. Y. ; Pei W. H. Acta Phys. -Chim. Sin. 2020, 36, 1912054. |
李亚民; 王阳; 陈弘达; 王毅军; 刘媛媛; 裴为华. 物理化学学报, 2020, 36, 1912054.
doi: 10.3866/PKU.WHXB201912054 |
|
16 |
Bedbrook C. N. ; Yang K. K. ; Gradinaru V. ; Arnold F. H. ; Robinson J. E. ; Mackey E. D. ; Gradinaru V. ; Arnold F. H. Nat. Methods 2019, 16, 1176.
doi: 10.1038/s41592-019-0583-8 |
17 |
Zhang F. ; Prigge M. ; Beyrière F. ; Tsunoda S. P. ; Mattis J. ; Yizhar O. ; Hegemann P. ; Deisseroth K. Nat. Neurosci. 2008, 11, 631.
doi: 10.1038/nn.2120 |
18 |
Lin J. Y. ; Knutsen P. M. ; Muller A. ; Kleinfeld D. ; Tsien R. Y. Nat. Neurosci. 2013, 16, 1499.
doi: 10.1038/nn.3502 |
19 |
Yizhar O. ; Fenno L. E. ; Prigge M. ; Schneider F. ; Davidson T. J. ; O'Shea D. J. ; Sohal V. S. ; Goshen I. ; Finkelstein J. ; Paz J. T. ; et al Nature 2011, 477, 171.
doi: 10.1038/nature10360 |
20 |
Klapoetke N. C. ; Murata Y. ; Kim S. S. ; Pulver S. R. ; Birdsey-Benson A. ; Cho Y. K. ; Morimoto T. K. ; Chuong A. S. ; Carpenter E. J. ; Tian Z. ; Wang J. ;et al Nat. Methods 2014, 11, 338.
doi: 10.1038/NMETH.2836 |
21 |
Miyazaki T. ; Chowdhury S. ; Yamashita T. ; Matsubara T. ; Yawo H. ; Yuasa H. ; Yamanaka A. Cell Rep. 2019, 26, 1033.
doi: 10.1016/j.celrep.2019.01.001 |
22 |
Zhou J. ; Liu Q. ; Feng W. ; Sun Y. ; Li F. Chem. Rev. 2015, 115, 395.
doi: 10.1021/cr400478f |
23 |
Weissleder R. Nat. Biotechnol. 2001, 19, 316.
doi: 10.1038/86684 |
24 |
Smith A. M. ; Mancini M. C. ; Nie S. Nat. Nanotech. 2009, 4, 710.
doi: 10.1038/nnano.2009.326 |
25 |
Shi L. ; Sordillo L. A. ; Rodríguez-Contreras A. ; Alfano R. J. Biophotonics 2016, 9, 38.
doi: 10.1002/jbio.201500192 |
26 |
Pansare V. J. ; Hejazi S. ; Faenza W. J. ; Prud'homme R. K. Chem. Mater. 2012, 24, 812.
doi: 10.1021/cm2028367 |
27 |
Yi G. S. ; Chow G. M. Adv. Funct. Mater. 2006, 16, 2324.
doi: 10.1002/adfm.200600053 |
28 |
Shen J. ; Chen G. ; Vu A. M. ; Fan W. ; Bilsel O. S. ; Chang C. C. ; Han G. Adv. Opt. Mater. 2013, 1, 644.
doi: 10.1002/adom.201300160 |
29 |
Ye S. ; Song J. ; Chen L. C. ; Wang D. ; Peng X. ; Qu J. L. Acta Opt. Sin. 2015, 35, 221.
doi: 10.3788/AOS201535.0816005 |
30 |
Kou L. H. ; Labrie D. ; Chylek P. Appl. Opt. 1993, 32, 3531.
doi: 10.1364/AO.32.003531 |
31 |
Fan Y. ; Wang S. ; Zhang F. Angew. Chem. Int. Ed. 2019, 58, 13208.
doi: 10.1002/anie.201901964 |
32 |
Zhou L. ; Wang R. ; Yao C. ; Li X. ; Wang C. ; Zhang X. ; Xu C. ; Zeng A. ; Zhao D. ; Zhang F. Nat. Commun. 2015, 24, 6938.
doi: 10.1038/ncomms7938 |
33 |
Zhan Q. Q. ; Qian J. ; Liang H. J. ; Somesfalean G. ; Andersson-Engels S. ACS Nano 2011, 5, 3744.
doi: 10.1021/nn200110j |
34 |
Wang F. ; Deng R. ; Wang J. ; Wang Q. ; Han Y. ; Zhu H. ; Chen X. ; Liu X. Nat. Mater. 2011, 10, 968.
doi: 10.1038/nmat3149 |
35 |
Zhou B. ; Yang W. ; Han S. ; Sun Q. ; Liu X. Adv. Mater. 2015, 27, 6208.
doi: 10.1002/adma.201503482 |
36 |
Lu Y. ; Zhao J. ; Zhang R. ; Liu Y. ; Liu D. ; Goldys E. M. ; Yang X. ; Xi P. ; Sunna A. ; Lu J. ; et al Nat. Photon. 2014, 8, 32.
doi: 10.1038/nphoton.2013.322 |
37 |
Ortgies D. H. ; Tan M. ; Ximendes E. C. ; Rosal B. D. ; Hu J. ; Wang L. X. X. ; Rodriguez E. M., Jacinto C., Rernandez N., Chen G., et al. ACS Nano 2018, 12, 4362.
doi: 10.1021/acsnano.7b09189 |
38 |
Zheng W. ; Zhou S. ; Chen Z. ; Hu P. ; Liu Y. ; Tu D. ; Zhu H. ; Li R. ; Huang M. ; Chen X. Angew. Chem. Int. Ed. 2013, 52, 6671.
doi: 10.1002/anie.201302481 |
39 |
Wang Y. ; Deng R. ; Xie X. ; Huang L. ; Liu X. Nanoscale 2016, 8, 6666.
doi: 10.1039/C6NR00812G |
40 |
Gargas D. J. ; Chan E. M. ; Ostrowski A. D. ; Aloni S. ; Altoe M. V. P. ; Barnard E. S. ; Sanii B. ; Urban J. J. ; Milliron D. J. ; Cohen B. E. ; et al Nat. Nanotech. 2014, 9, 300.
doi: 10.1038/NNANO.2014.29 |
41 |
Zhou L. ; Fan Y. ; Wang R. ; Li X. ; Fan L. ; Zhang F. Angew. Chem. Int. Ed. 2018, 57, 12824.
doi: 10.1002/anie.201808209 |
42 |
Lu Y. ; Lu J. ; Zhao J. ; Cusido J. ; Raymo F. M. ; Yuan J. ; Yang S. ; Leif R. C. ; Huo Y. ; Piper J. A. ; et al Nat. Commun. 2014, 5, 3741.
doi: 10.1038/ncomms4741 |
43 |
Yi G. S. ; Chow G. M. Chem. Mater 2007, 19, 341.
doi: 10.1021/cm062447y |
44 |
Mai H. X. ; Zhang Y. W. ; Sun L. D. ; Yan C. H. J. Phys. Chem. C 2007, 111, 13721.
doi: 10.1021/jp073920d |
45 |
Ansari A. A. ; Yadav R. ; Rai S. B. RSC Adv. 2016, 6, 22074.
doi: 10.1039/C6RA00265J |
46 |
Schäfer B. H. ; Ptacek P. ; Zerzouf O. ; Haase M. Adv. Funct. Mater. 2008, 18, 2913.
doi: 10.1002/adfm.200800368 |
47 |
Vetrone F. ; Naccache R. ; Mahalingam V. ; Morgan C. G. ; Capobianco J. A. Adv. Funct. Mater. 2009, 19, 2924.
doi: 10.1002/adfm.200900234 |
48 |
Qian H. S. ; Zhang Y. Langmuir 2008, 24, 12123.
doi: 10.1021/la802343f |
49 |
Liu Y. ; Tu D. ; Zhu H. ; Li R. ; Luo W. ; Chen X. Adv. Mater. 2010, 22, 3266.
doi: 10.1002/adma.201000128 |
50 |
Yang D. ; Li C. ; Li G. ; Shang M. ; Kang X. ; Lin J. J. Mater. Chem. 2011, 21, 5923.
doi: 10.1039/c0jm04179c |
51 |
Ghosh P. ; Oliva J. ; De la Rosa E. ; Haldar K. K. ; Solis D. ; Patra A. J. Phys. Chem. C 2008, 112, 9650.
doi: 10.1021/jp801978b |
52 |
Liu X. ; Kong X. ; Zhang Y. ; Tu L. ; Wang Y. ; Zeng Q. ; Li C. ; Shic Z. ; Zhang H. Chem. Commun. 2011, 4, 11957.
doi: 10.1039/c1cc14774a |
53 |
Chen D. ; Yu Y. ; Huang F. ; Lin H. ; Huang P. ; Yang A. ; Wang Z. ; Wang Y. J. Mater. Chem. 2012, 22, 2632.
doi: 10.1039/C1JM14589D |
54 |
Zhang Y. ; Liu X. ; Lang Y. ; Yuan Z. ; Zhao D. ; Qin G. ; Qin W. J. Mat. Chem. C 2015, 3, 2045.
doi: 10.1039/c4tc02541e |
55 |
Zou W. ; Visser C. ; Maduro J. A. ; Pshenichnikov M. S. ; Hummelen J. C. Nat. Photonics 2012, 6, 560.
doi: 10.1038/nphoton.2012.158 |
56 |
Wu X. ; Lee H. ; Bilsel O. ; Zhang Y. ; Li Z. ; Chen T. ; Liu Y. ; Duan C ; Shen J. ; Punjabi A. ; Han G. Nanoscale 2015, 7, 18424.
doi: 10.1039/C5NR05437K |
57 |
Lee J. ; Yoo B. ; Lee H. ; Cha G. D. ; Lee H. S. ; Cho Y. ; Kim S. Y. ; Seo H. ; Lee W. ; Son D. ; et al Adv Mater. 2017, 29, 1603169.
doi: 10.1002/adma.201603169 |
58 |
Chen G. ; Damasco J. ; Qiu H. ; Shao W. ; Ohulchanskyy T. Y. ; Valiev R. R. ; Wu X. ; Han G. ; Wang Y. ; Yang C. ; et al Nano Lett. 2015, 15, 7400.
doi: 10.1021/acs.nanolett.5b02830 |
59 |
Wu X. ; ZhangY. ; Takle K. ; Bilsel O. ; Li Z. ; Lee H. ; Zhang Z. ; Li D. ; Fan W. ; Duan C. ; et al ACS Nano 2016, 10, 1060.
doi: 10.1021/acsnano.5b06383 |
60 |
Hososhima S. ; Yuasa H. ; Ishizuka T. ; Hoque M. ; Yamashita T. ; Yamanaka A. ; Sugano E. ; Tomita H. ; Yawo H. Sci. Rep. 2015, 5, 16533.
doi: 10.1038/srep16533 |
61 |
Shah S. ; Liu J. ; Pasquale N. ; Lai J. ; McGowan H. ; Pang Z. P. ; Lee K. B. Nanoscale 2015, 7, 16571.
doi: 10.1039/C5NR03411F |
62 |
Bansal A. ; Liu H. ; Jayakumar M. K. G. ; Andersson-Engels S. ; Zhang Y. Small 2016, 12, 1732.
doi: 10.1002/smll.201503792 |
63 |
Ai X. ; Lyu L. ; Zhang Y. ; Tang Y. ; Mu J. ; Liu F. ; Zhou Y. ; Zuo Z. ; Liu G. ; Xing B. Angew. Chem. Int. Ed. 2017, 56, 3031.
doi: 10.1002/anie.201612142 |
64 |
Lin X. ; Wang Y. ; Chen X. ; Yang R. ; Wang Z. ; Feng J. ; Wang H. ; Lai K. W. C. ; He J. ; Wang F. ; Shi P. Adv. Healthcare Mater. 2017, 6, 1700446.
doi: 10.1002/adhm.201700446 |
65 |
Wang Y. ; Lin X. ; Chen X. ; Chen X. ; Xu Z. ; Zhang W. ; Liao Q. ; Duan X. ; Wang X. ; Liu M. ; et al Biomaterials 2017, 142, 136.
doi: 10.1016/j.biomaterials.2017.07.017 |
66 |
Mattis J. ; Tye K. M. ; Ferenczi E. A. ; Ramakrishnan C. ; O'Shea D. J. ; Prakash R. ; Gunaydin L. A. ; Hyun M. ; Fenno L. E. ; Gradinaru V. ; et al Nat. Methods 2011, 9, 159.
doi: 10.1038/nmeth.1808 |
67 |
Lin X. ; Chen X. ; Zhang W. ; Sun T. ; Fang P. ; Liao Q. ; Chen X. ; He J. ; Liu M. ; Wang F. ; Shi P. Nano Lett. 2018, 18, 948.
doi: 10.1021/acs.nanolett.7b04339 |
68 |
Chen S. ; Weitemier A. Z. ; Zeng X. ; He L. ; Wang X. ; Tao Y. ; Huang A. J. Y. ; Hashimotodani Y. ; Kano M. ; Iwasaki H. ; Parajuli L. K. ; et al Science 2018, 359, 679.
doi: 10.1126/science.aaq1144 |
69 |
Buzsáki G. ; Stark E. ; Berényi A. ; Khodagholy D. ; Kipke D. R. ; Yoon E. ; Wise K. D. Neuron 2015, 86, 92.
doi: 10.1016/j.neuron.2015.01.028 |
70 |
Alivisatos A. P. ; Chun M. ; Church G. M. ; Deisseroth K. ; Donoghue J. P. ; Greenspan R. J. ; McEuen P. L. ; Roukes M. L. ; Sejnowski T. J. ; Weiss P. S. ; Yuste R. Science 2013, 339, 1284.
doi: 10.1126/science.1236939 |
71 |
Buzsaki G. Nat. Neurosci. 2004, 7, 446.
doi: 10.1038/nn1233 |
72 |
Carandini M. Nat. Neurosci. 2012, 15, 507.
doi: 10.1038/nn.3043 |
73 |
Nicolelis M. A. L. ; Ghazanfar A. A. ; Faggin B. M. ; Votaw S. ; Oliveira L. M. O. Neuron 1997, 18, 529.
doi: 10.1016/S0896-6273(00)80295-0 |
74 |
Liu J. ; Fu T. M. ; Fu T. M. ; Cheng Z. ; Hong G. ; Zhou T. ; Jin L. ; Duvvuri M. ; Jiang Z. ; Kruskal P. ; Xie C. ; et al Nat. Nanotech. 2015, 10, 629.
doi: 10.1038/nnano.2015.115 |
75 |
Guan S. ; Wang J. ; Gu X. ; Zhao Y. ; Hou R. ; Fan H. ; Zou L. ; Gao L. ; Du M. ; Li C. ; Fang Y. Sci. Adv. 2019, 5, eaav2842.
doi: 10.1126/sciadv.aav2842 |
[1] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[2] | Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2009056-. |
[3] | Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905084-. |
[4] | Yamin Li, Yang Wang, Hongda Chen, Yijun Wang, Yuanyuan Liu, Weihua Pei. Development of Implantable Optrode Devices [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 1912054-. |
[5] | Chunrong Wei, Fei Wang, Weihua Pei, Zhiduo Liu, Xurui Mao, Hongze Zhao, Sikai Wang, Yijun Wang, Xiaowei Yang, Yuanyuan Liu, Shanshan Zhao, Qiang Gui, Hongda Chen. Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2005033-. |
[6] | Meiqi ZHANG, Yunlong MA, Qingdong ZHENG. Bandgap Modulation of Dithienonaphthalene-Based Small-Molecule Acceptors for Nonfullerene Organic Solar Cells [J]. Acta Physico-Chimica Sinica, 2019, 35(5): 503-508. |
[7] | Zhongqiang ZHANG, Shuhua ZHANG, Zhixi LIU, Zhiguo ZHANG, Yongfang LI, Changzhi LI, Hongzheng CHEN. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 394-400. |
[8] | Qingqing XU,Chunmei CHANG,Wanbin LI,Bing GUO,Xia GUO,Maojie ZHANG. Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 268-274. |
[9] | Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285. |
[10] | Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249. |
[11] | Li-Gang XU, Wei QIU, Run-Feng CHEN, Hong-Mei ZHANG, Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells [J]. Acta Physico-Chimica Sinica, 2018, 34(1): 36-48. |
[12] | Shao-Qing ZHANG,Jian-Hui HOU. Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2327-2338. |
[13] | Guo-Cheng XU,Xian-Yun DENG,Jun-Li LI,Rui ZHANG,Yun-Peng XIE,Guo-Li TU,Jiang-Bin XIA,Xing LU. Lead Iodide as a New Type of Hole Transport Layer for the High Performance of P3HT:PC61BM-Based Solar Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1307-1313. |
[14] | ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan. Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1495-1500. |
[15] | ZHAO Wei-Rong, ZENG Wan-Yun, XI Hai-Ping, YU Xian-Xian. Photocatalytic Degradation of Gas-Phase Toluene over CuO Loaded BiVO4 Hollow Nanospheres under Visible-light Irradiation [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 761-767. |
|