Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (12): 2003050.doi: 10.3866/PKU.WHXB202003050
Special Issue: Neural Interfaces
• REVIEW • Previous Articles Next Articles
Ke Xu1,2,3, Jinfen Wang1,2,*()
Received:
2020-03-21
Accepted:
2020-04-23
Published:
2020-04-29
Contact:
Jinfen Wang
E-mail:wangjinfen@nanoctr.cn
Supported by:
Ke Xu, Jinfen Wang. 1D and 2D Nanomaterials-based Electronics for Neural Interfaces[J]. Acta Phys. -Chim. Sin. 2020, 36(12), 2003050. doi: 10.3866/PKU.WHXB202003050
Fig 1
Carbon nanotubes modulate neuronal growth. (a) Fluorescence images of live neurons grown on PEI-coated coverslips and SWNT-PEG films of varying conductivity 28. Reprinted with permission from Ref.28, © American Chemical Society 2009. (b) Confocal micrographs of hippocampal cultures grown on 2D-PDMS control substrates and 3D-PDMS scaffolds 34. Scale bar: 100 μm. (c) Confocal reconstruction of a 3D-MWCNT scaffold (in grey), neurons (in red) and glia cells (in green) 34. Scale bar: 50 μm. Reprinted with permission from Ref.34, © Nature Publishing Group 2015."
Fig 2
Carbon nanotubes as conducting layers or coating layers of neural electrodes. (a) SEM images of pure CNTs probes 36. Scale bars: 1 μm. (b) Well-isolated single unit activities recorded from pure CNTs probes 36. Reprinted with permission from Ref.36, © Public Library of Science 2013. (c and d) Optical transparency of the CNTs electrode array and light-evoked potentials under photostimulus of different stimulus intensity and duration 41. Reprinted with permission from Ref.41, © American Chemical Society 2018. (e) Optical microscopy image of TiN microelectrode arrays printed by functionalized COOH-MWCNTs 46. (f) Waveform recorded by MWCNTs modified microelectrode 46. (g) The extracellular spikes amplitude detected by CNTs-coated MEA electrodes and uncoated electrodes 46. Reprinted with permission from Ref.46, © Wiley-VCH 2011."
Fig 3
Silicon nanowire-based nanoelectronic devices for neural interfaces. (a) Schematic of the probe with paired U-SiNWs FETs 58. (b) Simultaneous intracellular recording from one DRG neuron by two FETs on one probe arm (ⅰ); derivative of traces in the region marked by a dashed box (ⅱ) 58. Reprinted with permission from Ref.58, © Nature Publishing Group 2019. (c) Colorized angle-view SEM image of hiPSC-derived cortical neurons cultured on a Si nanowire array and measured potentials on channels 6–8 66. Scale bar: 4 μm. Reprinted with permission from Ref.66, © American Chemical Society 2017. (d) Schematic of the setup used to record DRG neuron action potentials in response to a 532 nm laser stimulation at a single neuron/SiNWs interface 71. (e) SEM images of the neuron/PIN-SiNWs interface 71. (f) Patch-clamp electrophysiology current-clamp trace of membrane voltage in a DRG neuron stimulated by injected current (blue pulse) and a laser pulse (green bar) 71. Reprinted with permission from Ref.71, © Nature Publishing Group 2018."
Fig 4
Graphene-based electronics for neural recordings. (a) Fluorescence images of hNSCs differentiated on glass and graphene 21. Scale bar: 200 μm. Reprinted with permission from Ref.21, © Wiley-VCH 2011. (b) SEM images of the tip of the Pt-coating graphene fiber microelectrode 77. Reprinted with permission from Ref.77, © Wiley-VCH 2019. (c) Tilt SEM image of a 64-spot porous graphene array 79. Scale bars: 1 mm and 100 μm. (d) Spontaneous up and down states recorded cross the 16-electrode array 79. Reprinted with permission from Ref. 79, © Nature Publishing Group 2016. (e and f) SEM image of a highly crumpled graphene/CNTs transistor and real-time recording of penicillin-induced epileptic activity in rats 84. Reprinted with permission from Ref. 84, © American Chemical Society 2016."
Fig 5
Graphene microelectrodes for multimodal neural interfaces. (a) Diagram of carbon-layered electrode array (CLEAR) construction 87. (b and c) Fluorescence image of CLEAR device (scale bar, 500 μm) and optical evoked potentials (x-scale bar, 50 ms; y-scale bar, 100 μV) 87. Reprinted with permission from Ref.87, © Nature Publishing Group 2014. (d) Three different types of graphene multielectrode arrays with varying electrode site diameters (100, 150, 200 μm) 88. (e and f) Visualization of the fluorescent neural response and the response intensity after electrical stimulation with graphene electrode 88. Reprinted with permission from Ref.88, © American Chemical Society 2017. (g) Bright-field image of an exposure with graphene microelectrode array. Scale bar: 500 μm. (h and i) Measurement of vascular responses to optogenetic photostimulation below graphene microelectrode arrays 90. Scale bar: 500 μm. Reprinted with permission from Ref.90, © Nature Publishing Group 2018."
Fig 6
Other 1D and 2D nanomaterials for neural interfaces. (a) The photograph and SEM image of electrode grids 96. Scale bars: 500 μm, 20 μm and 1 μm. (b) Raw LFP trace highlighting a spatially patterned gamma oscillation during an NREM epoch 96. Scale bar: 100 ms. Reprinted with permission from Ref.96, © Wiley-VCH 2018. (c) Illustration and SEM image of retina-nanowire interfaces 97. Scale bar: 5 μm. (d) Near UV, blue and green light responses in wild-type, blind and NW arrays-interfaced blind retinas 97. Reprinted with permission from Ref. 97, © Nature Publishing Group 2018. (e) Bright-field microscopy and SEM image of Ti3C2/Au intracortical electrode array 105. (f) Comparison of in vivo signal recorded on Ti3C2 and Au electrodes intracortically 105. Reprinted with permission from Ref. 105, © American Chemical Society 2018."
1 |
Shanechi M. M. Nat. Neurosci. 2019, 22 (10), 1554.
doi: 10.1038/s41593-019-0488-y |
2 |
Hochberg L. R. ; Bacher D. ; Jarosiewicz B. ; Masse N. Y. ; Simeral J. D. ; Vogel J. ; Haddadin S. ; Liu J. ; Cash S. S. ; van der Smagt P. ; et al Nature 2012, 485 (7398), 372.
doi: 10.1038/nature11076 |
3 |
Dai X. ; Hong G. ; Gao T. ; Lieber C. M. Acc. Chem. Res. 2018, 51 (2), 309.
doi: 10.1021/acs.accounts.7b00547 |
4 |
Hong G. ; Viveros R. D. ; Zwang T. J. ; Yang X. ; Lieber C. M. Biochemistry 2018, 57 (27), 3995.
doi: 10.1021/acs.biochem.8b00122 |
5 |
Guan S. ; Wang J. ; Gu X. ; Zhao Y. ; Hou R. ; Fan H. ; Zou L. ; Gao L. ; Du M. ; Li C. ; et al Sci. Adv. 2019, 5 (3), eaav2842.
doi: 10.1126/sciadv.aav2842 |
6 |
Kozai T. D.Y. ; Langhals N. B. ; Patel P. R. ; Deng X. ; Zhang H. ; Smith K. L. ; Lahann J. ; Kotov N. A. ; Kipke D. R. Nat. Mater. 2012, 11 (12), 1065.
doi: 10.1038/nmat3468 |
7 |
Jun J. J. ; Steinmetz N. A. ; Siegle J. H. ; Denman D. J. ; Bauza M. ; Barbarits B. ; Lee A. K. ; Anastassiou C. A. ; Andrei A. ; Aydin C. ; et al Nature 2017, 551 (7679), 232.
doi: 10.1038/nature24636 |
8 |
Chen R. ; Canales A. ; Anikeeva P. Nat. Rev. Mater. 2017, 2 (2), 16093.
doi: 10.1038/natrevmats.2016.93 |
9 |
Buzsáki G. Nat. Neurosci. 2004, 7 (5), 446.
doi: 10.1038/nn1233 |
10 |
Zhang A. ; Zhao Y. ; You S. S. ; Lieber C. M. Nano Today 2020, 31, 100821.
doi: 10.1016/j.nantod.2019.100821 |
11 |
Hong G. ; Fu T. M. ; Qiao M. ; Viveros R. D. ; Yang X. ; Zhou T. ; Lee J. M. ; Park H. G. ; Sanes J. R. ; Lieber C. M. Science 2018, 360 (6396), 1447.
doi: 10.1126/science.aas9160 |
12 |
Gray C. M. ; Maldonado P. E. ; Wilson M. ; McNaughton B. J. Neurosci. Meth. 1995, 63, 43.
doi: 10.1016/0165-0270(95)00085-2 |
13 |
Csicsvari J. ; Henze D. A. ; Jamieson B. ; Harris K. D. ; Siróta A. ; Barthó P. ; Wise K. D. ; Buzsáki G. J. Neurophysiol. 2003, 90 (2), 1314.
doi: 10.1152/jn.00116.2003 |
14 |
Cody P. A. ; Eles J. R. ; Lagenaur C. F. ; Kozai T. D. Y. ; Cui X. T. Biomaterials 2018, 161, 117.
doi: 10.1016/j.biomaterials.2018.01.025 |
15 |
Polikov V. S. ; Tresco P. A. ; Reichert W. M. J. Neurosci. Meth. 2005, 148 (1), 1.
doi: 10.1016/j.jneumeth.2005.08.015 |
16 |
McConnell G. C. ; Rees H. D. ; Levey A. I. ; Gutekunst C. A. ; Gross R. E. ; Bellamkonda R. V. J. Neural Eng. 2009, 6 (5), 056003.
doi: 10.1088/1741-2560/6/5/056003 |
17 |
Gimsa J. ; Habel B. ; Schreiber U. ; van Rienen U. ; Strauss U. ; Gimsa U. J. Neurosci. Meth. 2005, 142 (2), 251.
doi: 10.1016/j.jneumeth.2004.09.001 |
18 |
Duan X. ; Fu T. M. ; Liu J. ; Lieber C. M. Nano Today 2013, 8 (4), 351.
doi: 10.1016/j.nantod.2013.05.001 |
19 |
Usmani S. ; Aurand E. R. ; Medelin M. ; Fabbro A. ; Scaini D. ; Laishram J. ; Rosselli F. B. ; Ansuini A. ; Zoccolan D. ; Scarselli M. ; et al Sci. Adv. 2016, 2 (7), e1600087.
doi: 10.1126/sciadv.1600087 |
20 |
Aurand E. R. ; Usmani S. ; Medelin M. ; Scaini D. ; Bosi S. ; Rosselli F. B. ; Donato S. ; Tromba G. ; Prato M. ; Ballerini L. Adv. Funct. Mater. 2018, 28 (12), 1700550.
doi: 10.1002/adfm.201700550 |
21 |
Park S. Y. ; Park J. ; Sim S. H. ; Sung M. G. ; Kim K. S. ; Hong B. H. ; Hong S. Adv. Mater. 2011, 23 (36), H263.
doi: 10.1002/adma.201101503 |
22 |
Li N. ; Zhang Q. ; Gao S. ; Song Q. ; Huang R. ; Wang L. ; Liu L. ; Dai J. ; Tang M. ; Cheng G. Sci. Rep. 2013, 3, 1604.
doi: 10.1038/srep01604 |
23 |
Zhang A. ; Lieber C. M. Chem. Rev. 2016, 116 (1), 215.
doi: 10.1021/acs.chemrev.5b00608 |
24 |
Aldinucci A. ; Turco A. ; Biagioli T. ; Toma F. M. ; Bani D. ; Guasti D. ; Manuelli C. ; Rizzetto L. ; Cavalieri D. ; Massacesi L. ; et al Nano Lett. 2013, 13 (12), 6098- 6105.
doi: 10.1021/nl403396e |
25 |
Guo Y. ; Jiang S. ; Grena B. J. B. ; Kimbrough I. F. ; Thompson E. G. ; Fink Y. ; Sontheimer H. ; Yoshinobu T. ; Jia X. ACS Nano 2017, 11 (7), 6574.
doi: 10.1021/acsnano.6b07550 |
26 |
Bareket-Keren L. ; Hanein Y. Front. Neural Circuits 2012, 6, 122.
doi: 10.3389/fncir.2012.00122 |
27 |
Mattson M. P. ; Haddon R. C. ; Rao A. M. J. Mol. Neurosci. 2000, 14 (3), 175.
doi: 10.1385/jmn:14:3:175 |
28 |
Malarkey E. B. ; Fisher K. A. ; Bekyarova E. ; Liu W. ; Haddon R. C. ; Parpura V. Nano Lett. 2009, 9 (1), 264.
doi: 10.1021/nl802855c |
29 |
Krukiewicz K. ; Janas D. ; Vallejo-Giraldo C. ; Biggs M. J. P. Electrochim. Acta 2019, 295, 253.
doi: 10.1016/j.electacta.2018.10.157 |
30 |
Mazzatenta A. ; Giugliano M. ; Campidelli S. ; Gambazzi L. ; Businaro L. ; Markram H. ; Prato M. ; Ballerini L. J. Neurosci. 2007, 27 (26), 6931.
doi: 10.1523/JNEUROSCI.1051-07.2007 |
31 |
Matsumoto K. ; Sato C. ; Naka Y. ; Kitazawa A. ; Whitby R. L. ; Shimizu N. J. Biosci. Bioeng. 2007, 103 (3), 216.
doi: 10.1263/jbb.103.216 |
32 |
Visalli G. ; Curròa M. ; Iannazzo D. ; Pistone A. ; Ciarello M. P. ; Acri G. ; Testagrossa B. ; Bertuccio M. P. ; Squeri R. ; Pietro A. D. Environ. Toxicol. Pharmacol. 2017, 56, 121.
doi: 10.1016/j.etap.2017.09.005 |
33 |
Bussy C. ; Al-Jamal K. T. ; Boczkowski J. ; Lanone S. ; Prato M. ; Bianco A. ; Kostarelos K. ACS Nano 2015, 9 (8), 7815.
doi: 10.1021/acsnano.5b02358 |
34 |
Bosi S. ; Rauti R. ; Laishram J. ; Turco A. ; Lonardoni D. ; Nieus T. ; Prato M. ; Scaini D. ; Ballerini L. Sci. Rep. 2015, 5, 9562.
doi: 10.1038/srep09562 |
35 |
Cellot G. ; Cilia E. ; Cipollone S. ; Rancic V. ; Sucapane A. ; Giordani S. ; Gambazzi L. ; Markram H. ; Grandolfo M. ; Scaini D. ; et al Nat. Nanotechnol. 2009, 4 (2), 126.
doi: 10.1038/nnano.2008.374 |
36 |
Yoon I. ; Hamaguchi K. ; Borzenets I. V. ; Finkelstein G. ; Mooney R. ; Donald B. R. PLoS One 2013, 8 (6), e65715.
doi: 10.1371/journal.pone.0065715 |
37 |
Su H. C. ; Lin C. M. ; Yen S. J. ; Chen Y. C. ; Chen C. H. ; Yeh S. R. ; Fang W. ; Chen H. ; Yao D. J. ; Chang Y. C. ; et al Biosens. Bioelectron. 2010, 26 (1), 220.
doi: 10.1016/j.bios.2010.06.015 |
38 |
Zhang H. ; Patel P. R. ; Xie Z. ; Swanson S. D. ; Wang X. ; Kotov N. A. ACS Nano 2013, 7 (9), 7619.
doi: 10.1021/nn402074y |
39 |
David-Pur M. ; Bareket-Keren L. ; Beit-Yaakov G. ; Raz-Prag D. ; Hanein Y. Biomed. Microdevices 2014, 16 (1), 43.
doi: 10.1007/s10544-013-9804-6 |
40 |
Eleftheriou C. G. ; Zimmermann J. B. ; Kjeldsen H. D. ; David-Pur M. ; Hanein Y. ; Sernagor E. Biomaterials 2017, 112, 108.
doi: 10.1016/j.biomaterials.2016.10.018 |
41 |
Zhang J. ; Liu X. ; Xu W. ; Luo W. ; Li M. ; Chu F. ; Xu L. ; Cao A. ; Guan J. ; Tang S. ; et al Nano Lett. 2018, 18 (5), 2903.
doi: 10.1021/acs.nanolett.8b00087 |
42 |
Guo Y. ; Duan W. ; Ma C. ; Jiang C. ; Xie Y. ; Hao H. ; Wang R. ; Li L. Biomed. Eng. Online 2015, 14, 118.
doi: 10.1186/s12938-015-0113-6 |
43 |
Harreither W. ; Trouillon R. ; Poulin P. ; Neri W. ; Ewing A. G. ; Safina G. Anal. Chem. 2013, 85 (15), 7447.
doi: 10.1021/ac401399s |
44 |
Keefer E. W. ; Botterman B. R. ; Romero M. I. ; Rossi A. F. ; Gross G. W. Nat. Nanotechnol. 2008, 3 (7), 434.
doi: 10.1038/nnano.2008.2008.174 |
45 |
Suzuki I. ; Fukuda M. ; Shirakawa K. ; Jiko H. ; Gotoh M. Biosens. Bioelectron. 2013, 49, 270.
doi: 10.1016/j.bios.2013.05.023 |
46 |
Fuchsberger K. ; Le Goff A. ; Gambazzi L. ; Toma F. M. ; Goldoni A. ; Giugliano M. ; Stelzle M. ; Prato M. Small 2011, 7 (4), 524.
doi: 10.1002/smll.201001640 |
47 |
Lu Y. ; Li T. ; Zhao X. ; Li M. ; Cao Y. ; Yang H. ; Duan Y. Y. Biomaterials 2010, 31 (19), 5169.
doi: 10.1016/j.biomaterials.2010.03.022 |
48 |
Chen S. ; Pei W. ; Gui Q. ; Tang R. ; Chen Y. ; Zhao S. ; Wang H. ; Chen H. Sens. Actuators A 2013, 193, 141.
doi: 10.1016/j.sna.2013.01.033 |
49 |
Castagnola E. ; Maggiolini E. ; Ceseracciu L. ; Ciarpella F. ; Zucchini E. ; De Faveri S. ; Fadiga L. ; Ricci D. Front. Neurosci. 2016, 10, 151.
doi: 10.3389/fnins.2016.00151 |
50 |
Luo X. ; Matranga C. ; Tan S. ; Alba N. ; Cui X. T. Biomaterials 2011, 32 (26), 6316.
doi: 10.1016/j.biomaterials.2011.05.020 |
51 |
Castagnola E. ; Carli S. ; Vomero M. ; Scarpellini A. ; Prato M. ; Goshi N. ; Fadiga L. ; Kassegne S. ; Ricci D. Biointerphases 2017, 12 (3), 031002.
doi: 10.1116/1.4993140 |
52 |
Park Y. S. ; Yoon S. Y. ; Park J. S. ; Lee J. S. NPG Asia Mater. 2016, 8 (3), e249.
doi: 10.1038/am.2016.5 |
53 |
Qi S. ; Yi C. ; Ji S. ; Fong C. C. ; Yang M. ACS Appl. Mater. Interfaces 2009, 1 (1), 30.
doi: 10.1021/am800027d |
54 |
Kim W. ; Ng J. K. ; Kunitake M. E. ; Conklin B. R. ; Yang P. J. Am. Chem. Soc. 2007, 129 (23), 7228.
doi: 10.1021/ja071456k |
55 |
Patolsky F. ; Timko B. P. ; Yu G. ; Fang Y. ; Greytak A. B. ; Zheng G. ; Lieber C. M. Science 2006, 313 (5790), 1100.
doi: 10.1126/science.1128640 |
56 |
Tian B. ; Cohen-Karni T. ; Qing Q. ; Duan X. ; Xie P. ; Lieber C. M. Science 2010, 329 (5993), 830.
doi: 10.1126/science.1192033 |
57 |
Qing Q. ; Jiang Z. ; Xu L. ; Gao R. ; Mai L. ; Lieber C. M. Nat. Nanotechnol. 2014, 9 (2), 142.
doi: 10.1038/nnano.2013.273 |
58 |
Zhao Y. ; You S. S. ; Zhang A. ; Lee J. H. ; Huang J. ; Lieber C. M. Nat. Nanotechnol. 2019, 14 (8), 783.
doi: 10.1038/s41565-019-0478-y |
59 |
Duan X. ; Gao R. ; Xie P. ; Cohen-Karni T. ; Qing Q. ; Choe H. S. ; Tian B. ; Jiang X. ; Lieber C. M. Nat. Nanotechnol. 2011, 7 (3), 174.
doi: 10.1038/nnano.2011.223 |
60 |
Tian B. ; Liu J. ; Dvir T. ; Jin L. ; Tsui J. H. ; Qing Q. ; Suo Z. ; Langer R. ; Kohane D. S. ; Lieber C. M. Nat. Mater. 2012, 11 (11), 986.
doi: 10.1038/nmat3404 |
61 |
Dai X. ; Zhou W. ; Gao T. ; Liu J. ; Lieber C. M. Nat. Nanotechnol. 2016, 11 (9), 776.
doi: 10.1038/nnano.2016.96 |
62 |
Qing Q. ; Pal S. K. ; Tian B. ; Duan X. ; Timko B. P. ; Cohen-Karni T. ; Murthy V. N. ; Lieber C. M. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (5), 1882.
doi: 10.1073/pnas.0914737107 |
63 |
Liu J. ; Fu T. M. ; Cheng Z. ; Hong G. ; Zhou T. ; Jin L. ; Duvvuri M. ; Jiang Z. ; Kruskal P. ; Xie C. ; et al Nat. Nanotechnol. 2015, 10 (7), 629.
doi: 10.1038/nnano.2015.115 |
64 |
Xie C. ; Liu J. ; Fu T. M. ; Dai X. ; Zhou W. ; Lieber C. M. Nat. Mater. 2015, 14 (12), 1286.
doi: 10.1038/nmat4427 |
65 |
Robinson J. T. ; Jorgolli M. ; Shalek A. K. ; Yoon M. H. ; Gertner R. S. ; Park H. Nat. Nanotechnol. 2012, 7 (3), 180.
doi: 10.1038/nnano.2011.249 |
66 |
Liu R. ; Chen R. ; Youssef A. T. E. ; Lee S. H. ; Hinckley S. ; Khraiche M. L. ; Scott J. ; Pre D. ; Hwang Y. ; Tanaka A. ; et al Nano Lett. 2017, 17 (5), 2757.
doi: 10.1021/acs.nanolett.6b04752 |
67 |
Boyden E. S. ; Zhang F. ; Bamberg E. ; Nagel G. ; Deisseroth K. Nat. Neurosci. 2005, 8 (9), 1263.
doi: 10.1038/nn1525 |
68 |
Deisseroth K. Nat. Methods 2011, 8 (1), 26.
doi: 10.1038/nmeth.f.324 |
69 |
Hausser M. Nat. Methods 2014, 11 (10), 1012.
doi: 10.1038/nmeth.3111 |
70 |
Jiang Y. ; Carvalho-de-Souza J. L. ; Wong R. C. S. ; Luo Z. ; Isheim D. ; Zuo X. ; Nicholls A. W. ; Jung I. W. ; Yue J. ; Liu D. J. ; et al Nat. Mater. 2016, 15 (9), 1023.
doi: 10.1038/nmat4673 |
71 |
Parameswaran R. ; Carvalho-de-Souza J. L. ; Jiang Y. ; Burke M. J. ; Zimmerman J. F. ; Koehler K. ; Phillips A. W. ; Yi J. ; Adams E. J. ; Bezanilla F. ; et al Nat. Nanotechnol. 2018, 13 (3), 260.
doi: 10.1038/s41565-017-0041-7 |
72 |
Jiang Y. ; Li X. ; Liu B. ; Yi J. ; Fang Y. ; Shi F. ; Gao X. ; Sudzilovsky E. ; Parameswaran R. ; Koehler K. ; et al Nat. Biomed. Eng. 2018, 2 (7), 508.
doi: 10.1038/s41551-018-0230-1 |
73 |
Jiang Y. ; Parameswaran R. ; Li X. ; Carvalho-de-Souza J. L. ; Gao X. ; Meng L. ; Bezanilla F. ; Shepherd G. M. G. ; Tian B. Nat. Protoc. 2019, 14 (5), 1339.
doi: 10.1038/s41596-019-0135-9 |
74 |
Reddy S. ; He L. ; Ramakrishana S. ; Luo H. Curr. Opin. Biomed. Eng. 2019, 10, 69.
doi: 10.1016/j.cobme.2019.04.002 |
75 |
Guo W. ; Qiu J. ; Liu J. ; Liu H. Sci. Rep. 2017, 7 (1), 5678.
doi: 10.1038/s41598-017-06051-z |
76 |
Qian Y. ; Zhao X. ; Han Q. ; Chen W. ; Li H. ; Yuan W. Nat. Commun. 2018, 9 (1), 323.
doi: 10.1038/s41467-017-02598-7 |
77 |
Wang K. ; Frewin C. L. ; Esrafilzadeh D. ; Yu C. ; Wang C. ; Pancrazio J. J. ; Romero-Ortega M. ; Jalili R. ; Wallace G. Adv. Mater. 2019, 31 (15), e1805867.
doi: 10.1002/adma.201805867 |
78 |
Bourrier A. ; Shkorbatova P. ; Bonizzato M. ; Rey E. ; Barraud Q. ; Courtine G. ; Othmen R. ; Reita V. ; Bouchiat V. ; Delacour C. Adv. Healthc. Mater. 2019, 8 (18), e1801331.
doi: 10.1002/adhm.201801331 |
79 |
Lu Y. ; Lyu H. ; Richardson A. G. ; Lucas T. H. ; Kuzum D. Sci. Rep. 2016, 6, 33526.
doi: 10.1038/srep33526 |
80 |
Hébert C. ; Masvidal-Codina E. ; Suarez-Perez A. ; Calia A. B. ; Piret G. ; Garcia-Cortadella R. ; Illa X. ; Del Corro Garcia E. ; De la Cruz Sanchez J. M. ; Casals D. V. ; et al Adv. Funct. Mater. 2018, 28 (12), 1703976.
doi: 10.1002/adfm.201703976 |
81 |
Masvidal-Codina E. ; Illa X. ; Dasilva M. ; Calia A. B. ; Dragojević T. ; Vidal-Rosas E. E. ; Prats-Alfonso E. ; Martínez-Aguilar J. ; De la Cruz J. M. ; Garcia-Cortadella R. ; et al Nat. Mater. 2019, 18 (3), 280.
doi: 10.1038/s41563-018-0249-4 |
82 |
Du M. ; Xu X. ; Yang L. ; Guo Y. ; Guan S. ; Shi J. ; Wang J. ; Fang Y. Biosens. Bioelectron. 2018, 105, 109.
doi: 10.1016/j.bios.2018.01.027 |
83 |
Shi E. ; Li H. ; Yang L. ; Hou J. ; Li Y. ; Li L. ; Cao A. ; Fang Y. Adv. Mater. 2015, 27 (4), 682.
doi: 10.1002/adma.201403722 |
84 |
Yang L. ; Zhao Y. ; Xu W. ; Shi E. ; Wei W. ; Li X. ; Cao A. ; Cao Y. ; Fang Y. Nano Lett. 2017, 17 (1), 71.
doi: 10.1021/acs.nanolett.6b03356 |
85 |
Guan S. ; Wang J. ; Fang Y. Nano Today 2019, 26, 13.
doi: 10.1016/j.nantod.2019.01.003 |
86 |
Park D. W. ; Brodnick S. K. ; Ness J. P. ; Atry F. ; Krugner-Higby L. ; Sandberg A. ; Mikael S. ; Richner T. J. ; Novello J. ; Kim H. ; et al Nat. Protoc. 2016, 11 (11), 2201.
doi: 10.1038/nprot.2016.127 |
87 |
Park D. W. ; Schendel A. A. ; Mikael S. ; Brodnick S. K. ; Richner T. J. ; Ness J. P. ; Hayat M. R. ; Atry F. ; Frye S. T. ; Pashaie R. ; et al Nat. Commun. 2014, 5, 5258.
doi: 10.1038/ncomms6258 |
88 |
Park D. W. ; Ness J. P. ; Brodnick S. K. ; Esquibel C. ; Novello J. ; Atry F. ; Baek D. H. ; Kim H. ; Bong J. ; Swanson K. I. ; et al ACS Nano 2018, 12 (1), 148.
doi: 10.1021/acsnano.7b04321 |
89 |
Kuzum D. ; Takano H. ; Shim E. ; Reed J. C. ; Juul H. ; Richardson A. G. ; de Vries J. ; Bink H. ; Dichter M. A. ; Lucas T. H. ; et al Nat. Commun. 2014, 5, 5259.
doi: 10.1038/ncomms6259 |
90 |
Thunemann M. ; Lu Y. ; Liu X. ; Kilic K. ; Desjardins M. ; Vandenberghe M. ; Sadegh S. ; Saisan P. A. ; Cheng Q. ; Weldy K. L. ; et al Nat. Commun. 2018, 9 (1), 2035.
doi: 10.1038/s41467-018-04457-5 |
91 |
Jeong D. W. ; Kim G. H. ; Kim N. Y. ; Lee Z. ; Jung S. D. ; Lee J. O. RSC Adv. 2017, 7 (6), 3273.
doi: 10.1039/c6ra26836f |
92 |
Zhao S. ; Liu X. ; Xu Z. ; Ren H. ; Deng B. ; Tang M. ; Lu L. ; Fu X. ; Peng H. ; Liu Z. ; et al Nano Lett. 2016, 16 (12), 7731.
doi: 10.1021/acs.nanolett.6b03829 |
93 |
Kang M. ; Jung S. ; Zhang H. ; Kang T. ; Kang H. ; Yoo Y. ; Hong J. P. ; Ahn J. P. ; Kwak J. ; Jeon D. ; et al ACS Nano 2014, 8 (8), 8182.
doi: 10.1021/nn5024522 |
94 |
Lu C. ; Park S. ; Richner T. J. ; Derry A. ; Brown I. ; Hou C. ; Rao S. ; Kang J. ; Moritz C. T. ; Fink Y. ; et al Sci. Adv. 2017, 3, e1600955.
doi: 10.1126/sciadv.1600955 |
95 |
Li Y. ; Yang X. Y. ; Feng Y. ; Yuan Z. Y. ; Su B. L. Crit. Rev. Solid State Mater. Sci. 2012, 37 (1), 1.
doi: 10.1080/10408436.2011.606512 |
96 |
Tybrandt K. ; Khodagholy D. ; Dielacher B. ; Stauffer F. ; Renz A. F. ; Buzsáki G. ; Vörös J. Adv. Mater. 2018, 30 (15), e1706520.
doi: 10.1002/adma.201706520 |
97 |
Tang J. ; Qin N. ; Chong Y. ; Diao Y. ; Yiliguma ; Wang Z. ; Xue T. ; Jiang M. ; Zhang J. ; Zheng G. Nat. Commun. 2018, 9 (1), 786.
doi: 10.1038/s41467-018-03212-0 |
98 |
Ciofani G. ; Danti S. ; D'Alessandro D. ; Ricotti L. ; Moscato S. ; Bertoni G. ; Falqui A. ; Berrettini S. ; Petrini M. ; Mattoli V. ; et al ACS Nano 2010, 4 (10), 6267.
doi: 10.1021/nn101985a |
99 | Wang G. ; Hou C. ; Long H. ; Yang L. ; Wang Y. Acta Phys. -Chim. Sin. 2019, 35 (12), 1319. |
王根旺; 侯超剑; 龙昊天; 杨立军; 王扬. 物理化学学报, 2019, 35 (12), 1319.
doi: 10.3866/PKU.WHXB201903010 |
|
100 |
Chen W. ; Ouyang J. ; Yi X. ; Xu Y. ; Niu C. ; Zhang W. ; Wang L. ; Sheng J. ; Deng L. ; Liu Y. N. ; et al Adv. Mater. 2018, 30 (3), e1703458.
doi: 10.1002/adma.201703458 |
101 |
Kim Y. P. ; Lee G. S. ; Kim J. W. ; Kim M. S. ; Ahn H. S. ; Lim J. Y. ; Kim H. W. ; Son Y. J. ; Knowles J. C. ; Hyun J. K. J. Tissue Eng. Regener. Med. 2015, 9 (3), 236.
doi: 10.1002/term.1626 |
102 |
Qian Y. ; Yuan W. E. ; Cheng Y. ; Yang Y. ; Qu X. ; Fan C. Nano Lett. 2019, 19 (12), 8990.
doi: 10.1021/acs.nanolett.9b03980 |
103 |
Liu X. ; Miller A. L., Ⅱ ; Park S. ; George M. N. ; Waletzki B. E. ; Xu H. ; Terzic A. ; Lu L. ACS Appl. Mater. Interfaces 2019, 11 (26), 23558.
doi: 10.1021/acsami.9b04121 |
104 |
Xu B. ; Zhu M. ; Zhang W. ; Zhen X. ; Pei Z. ; Xue Q. ; Zhi C. ; Shi P. Adv. Mater. 2016, 28, 3333.
doi: 10.1002/adma.201504657 |
105 |
Driscoll N. ; Richardson A. G. ; Maleski K. ; Anasori B. ; Adewole O. ; Lelyukh P. ; Escobedo L. ; Cullen D. K. ; Lucas T. H. ; Gogotsi Y. ; et al ACS Nano 2018, 12 (10), 10419.
doi: 10.1021/acsnano.8b06014 |
106 |
Fattahi P. ; Yang G. ; Kim G. ; Abidian M. R. Adv. Mater. 2014, 26 (12), 1846.
doi: 10.1002/adma.201304496 |
107 |
Pampaloni N. P. ; Lottner M. ; Giugliano M. ; Matruglio A. ; D'Amico F. ; Prato M. ; Garrido J. A. ; Ballerini L. ; Scaini D. Nat. Nanotechnol. 2018, 13 (8), 755.
doi: 10.1038/s41565-018-0163-6 |
108 |
Li N. ; Zhang X. ; Song Q. ; Su R. ; Zhang Q. ; Kong T. ; Liu L. ; Jin G. ; Tang M. ; Cheng G. Biomaterials 2011, 32 (35), 9374.
doi: 10.1016/j.biomaterials.2011.08.065 |
109 |
Liu H. ; Haider B. ; Fried H. R. ; Ju J. ; Bolonduro O. ; Raghuram V. ; Timko B. P. Nano Res. 2018, 11 (10), 5372.
doi: 10.1007/s12274-018-2189-3 |
110 |
Yang H. ; Liu C. ; Yang D. ; Zhang H. ; Xi Z. J. Appl. Toxicol. 2009, 29 (1), 69.
doi: 10.1002/jat.1385 |
111 |
Pulskamp K. ; Diabaté S. ; Krug H. F. Toxicol. Lett. 2007, 168 (1), 58.
doi: 10.1016/j.toxlet.2006.11.001 |
112 |
Rauti R. ; Musto M. ; Bosi S. ; Prato M. ; Ballerini L. Carbon 2019, 143, 430.
doi: 10.1016/j.carbon.2018.11.026 |
113 |
Hu X. ; Wei Z. ; Mu L. Carbon 2017, 117, 182.
doi: 10.1016/j.carbon.2017.02.092 |
114 | Tian T. ; Lü M. ; Tian Y. ; Sun Y. ; Li X. ; Fan C. ; Huang Q. Chin. Sci. Bull. 2014, 59, 1927. |
田甜; 吕敏; 田旸; 孙艳红; 李晓霞; 樊春海; 黄庆. 科学通报, 2014, 59, 1927.
doi: 10.1360/N972014-00091 |
|
115 | Jiang, Z. Y. The Biosensing Applications of Silicon-based Nanomaterials and Cytotoxicity Assessment of Silicon Nanowires. M. S. Dissertation, Soochow University, Soochow, 2012. |
姜自云.硅基纳米材料的生物传感应用和硅纳米线的毒性评价[D].苏州:苏州大学, 2012. | |
116 |
Bolotsky A. ; Butler D. ; Dong C. ; Gerace K. ; Glavin N. R. ; Muratore C. ; Robinson J. A. ; Ebrahimi A. ACS Nano 2019, 13 (9), 9781.
doi: 10.1021/acsnano.9b03632 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[5] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[6] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[7] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[8] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[9] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[12] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[13] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[14] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[15] | Xiaofan Shen, Xiaona Wang, Nengsheng Yu, Wei Yang, Yurong Zhou, Yanhong Shi, Yulian Wang, Lizhong Dong, Jiangtao Di, Qingwen Li. A Polypyrrole-Coated MnO2/Carbon Nanotube Film Cathode for Rechargeable Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006059-. |
|