Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2006037.doi: 10.3866/PKU.WHXB202006037
• REVIEW • Previous Articles Next Articles
Yuecheng Xiong1, Fei Yu2, Jie Ma1,3,*()
Received:
2020-06-12
Accepted:
2020-07-07
Published:
2020-07-13
Contact:
Jie Ma
E-mail:jma@tongji.edu.cn
About author:
Jie Ma, Email: jma@tongji.edu.cnSupported by:
Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization[J]. Acta Phys. -Chim. Sin. 2022, 38(5), 2006037. doi: 10.3866/PKU.WHXB202006037
Fig 2
Evolution of CDI configurations. (a) Conventional CDI; (b) Membrane CDI (MCDI); (c) inverted CDI (iCDI); (d) Hybrid CDI (HCDI) with faradic cathode; (e) HCDI with faradic anode; (f) Dual-ion CDI (DI-CDI); (g) Double channel desalination system with faradic cathode; (h) Double channel desalination system with faradic anode; (i) Flow electrode/electrolyte CDI (FCDI)."
Fig 3
SEM images of chlorine ion removal materials. (a) Ag/10%CB 40. Copyright 2019 The Royal Society of Chemistry; (b) AgCl@GA 38. Copyright 2019 Elsevier; (c) Bi 24. Copyright 2017 American Chemical Society; (d) BiOCl 24. Copyright 2017 American Chemical Society; (e) NiCoAl-LMO/rGO 44. Copyright 2019 American Chemical Society; (f) Ti3C2 45. Copyright 2016 The Royal Society of Chemistry; (g) PPyCl@CNT 43. Copyright 2019 Wiley."
Fig 4
CV and GCD curves of chlorine ion removal materials. (a) CV (1 mol∙L-1 NaCl, 1 mV∙s-1) and (b) GCD (0.1 A∙g-1) curves of Ag and AgCl 40. Copyright 2019 The Royal Society of Chemistry; (c) LSV (0.6 mol∙L-1 NaCl, 5 mV∙s-1) and (d) GCD (1 mA∙cm-2) profiles of Bi 24. Copyright 2017 American Chemical Society; (e) CV (1 mol∙L-1 NaCl, 1 mV∙s-1) curve of CuAl-LDO/rGO 28. Copyright 2020 The Royal Society of Chemistry; (f) CV (1 mol∙L-1 NaCl, 5 mV∙s-1) curve of Ti3C2 45. Copyright 2016 The Royal Society of Chemistry; (g) Half-cell CV curve of Ti3C2 with YP-80F as counter electrode 45. Copyright 2016 The Royal Society of Chemistry; (h) CV (1 mol∙L-1 NaCl, 10 mV∙s-1) curve of PPyCl-CNT 43. Copyright 2019 Wiley."
Table 1
Performance comparison of CDI systems with different chlorine ion removal electrodes."
Mechanisms | Anode (Cl- removal) | Cathode (Na+ removal) | Current density/(mA∙g-1) | Initial NaCl concentration/(mg∙L-1) | Applied voltage/V | Cl- removal capacity/(mg∙g-1) | Ref. |
Electrosorption | GAC | graphite | – | 1000 | 1.2* | 5.60 | |
Conversion reactions | AgCl | Na0.44MnO2 | 100 | 890 | -1.0 – 1.5 | 34.78 | |
AgCl | Na3V2(PO4)3@C | 100 | 1000 | -1.4 – 1.4 | 59.39 | ||
AgCl@GA | Na3V2(PO4)3@GA | 100 | 1000 | -1.4 – 1.4 | 65.17 | ||
Ag@rGO | Na1.1V3O7.9@rGO | – | 2000 | 1.4* | 49.81 | ||
Ag | AgCl | 100 | 35100 | -0.1 – 0.1 | 69.69 | ||
Ag | AgCl | 1 mA∙cm-2 | 29250 | -0.2 – 0.2 | 51.51 | ||
Bi | NaTi2(PO4)3 | 1 mA∙cm-2 | 35100 | 0–1.1 | 169.6 (theoretical) | ||
BiOCl | Na0.44MnO2 | 100 | 760 | -1.4 – 1.5 | 41.51 | ||
Bi/rGO | AC | – | 585 | -1.2/1.2* | 37.93 | ||
Ion intercalation | CuAl-LDO//AC | AC | – | 1000 | 1.2* | 38.78 | |
Ti3C2Tx | Ti3C2Tx | – | 293 | 0/1.2* | 7.88 | ||
Redox reactions | PTMA | AC | – | 250 | 0/1.2* | 8.42 |
1 |
Hoekstra A. Y. ; Mekonnen M. M. ; Chapagain A. K. ; Mathews R. E. ; Richter B. D. PLoS One 2012, 7, e32688.
doi: 10.1371/journal.pone.0032688 |
2 |
Shannon M. A. ; Bohn P. W. ; Elimelech M. ; Georgiadis J. G. ; Marinas B. J. ; Mayes A. M. Nature 2008, 452, 301.
doi: 10.1038/nature06599 |
3 |
Subramani A. ; Jacangelo J. G. Water Res. 2015, 75, 164.
doi: 10.1016/j.watres.2015.02.032 |
4 |
Porada S. ; Zhao R. ; van der Wal A. ; Presser V. ; Biesheuvel P. M. Prog. Mater. Sci. 2013, 58, 1388.
doi: 10.1016/j.pmatsci.2013.03.005 |
5 |
Tan C. ; He C. ; Fletcher J. ; Waite T. D. Water Res. 2020, 168, 115146.
doi: 10.1016/j.watres.2019.115146 |
6 |
Zhou X. ; Zhao F. ; Guo Y. ; Zhang Y. ; Yu G. Energy Environ. Sci. 2018, 11, 1985.
doi: 10.1039/c8ee00567b |
7 |
Liu Y. ; Jiang Z. ; Zhang X. ; Shen P. K. J. Mater. Chem. A 2018, 6, 20037.
doi: 10.1039/c8ta07587e |
8 |
Suss M. E. ; Porada S. ; Sun X. ; Biesheuvel P. M. ; Yoon J. ; Presser V. Energy Environ. Sci. 2015, 8, 2296.
doi: 10.1039/c5ee00519a |
9 |
Cao J. ; Wang Y. ; Chen C. ; Yu F. ; Ma J. J. Colloid Interface Sci. 2018, 518, 69.
doi: 10.1016/j.jcis.2018.02.019 |
10 |
Ma J. ; Wang L. ; Yu F. Electrochim. Acta 2018, 263, 40.
doi: 10.1016/j.electacta.2018.01.041 |
11 |
Suss M. E. ; Presser V. Joule 2018, 2, 10.
doi: 10.1016/j.joule.2017.12.010 |
12 |
Zhang C. ; He D. ; Ma J. ; Tang W. ; Waite T. D. Water Res. 2018, 128, 314.
doi: 10.1016/j.watres.2017.10.024 |
13 |
Yu F. ; Wang L. ; Wang Y. ; Shen X. ; Cheng Y. ; Ma J. J. Mater. Chem. A 2019, 7, 15999.
doi: 10.1039/c9ta01264h |
14 |
Ma J. ; Xiong Y. ; Dai X. ; Yu F. Environ. Sci. Technol. Lett. 2020, 7, 118.
doi: 10.1021/acs.estlett.0c00027 |
15 |
Pasta M. ; Wessells C. D. ; Cui Y. ; La Mantia F. Nano Lett. 2012, 12, 839.
doi: 10.1021/nl203889e |
16 |
Cao J. ; Wang Y. ; Wang L. ; Yu F. ; Ma J. Nano Lett. 2019, 19, 823.
doi: 10.1021/acs.nanolett.8b04006 |
17 |
Wang K. ; Liu Y. ; Ding Z. ; Li Y. ; Lu T. ; Pan L. J. Mater. Chem. A 2019, 7, 12126.
doi: 10.1039/c9ta01106d |
18 |
Ma J. ; Wang L. ; Yu F. ; Dai X. Chem. Eng. J. 2019, 370, 938.
doi: 10.1016/j.cej.2019.03.243 |
19 |
Ding Z. ; Xu X. ; Li Y. ; Wang K. ; Lu T. ; Pan L. Desalination 2019, 468, 114078.
doi: 10.1016/j.desal.2019.114078 |
20 |
Zhao Y. ; Liang B. ; Wei X. ; Li K. ; Lv C. ; Zhao Y. J. Mater. Chem. A 2019, 7, 10464.
doi: 10.1039/c8ta12433g |
21 |
Yin H. ; Zhao S. ; Wan J. ; Tang H. ; Chang L. ; He L. ; Zhao H. ; Gao Y. ; Tang Z. Adv. Mater. 2013, 25, 6270.
doi: 10.1002/adma.201302223 |
22 |
Lee J. ; Kim S. ; Kim C. ; Yoon J. Energy Environ. Sci. 2014, 7, 3683.
doi: 10.1039/c4ee02378a |
23 |
Chen F. ; Huang Y. ; Guo L. ; Ding M. ; Yang H. Y. Nanoscale 2017, 9, 10101.
doi: 10.1039/c7nr01861d |
24 |
Nam D. H. ; Choi K. S. J. Am. Chem. Soc. 2017, 139, 11055.
doi: 10.1021/jacs.7b01119 |
25 |
Chen F. ; Huang Y. ; Guo L. ; Sun L. ; Wang Y. ; Yang H. Y. Energy Environ. Sci. 2017, 10, 2081.
doi: 10.1039/c7ee00855d |
26 |
Biesheuvel P. M. ; van der Wal A. J. Membr. Sci. 2010, 346, 256.
doi: 10.1016/j.memsci.2009.09.043 |
27 |
Wu T. ; Wang G. ; Wang S. ; Zhan F. ; Fu Y. ; Qiao H. ; Qiu J. Environ. Sci. Technol. Let. 2018, 5, 98.
doi: 10.1021/acs.estlett.7b00540 |
28 |
Xi W. ; Li H. Environ. Sci. Nano 2020, 7, 764.
doi: 10.1039/c9en01238a |
29 |
Smith K. C. Electrochim. Acta 2017, 230, 333.
doi: 10.1016/j.electacta.2017.02.006 |
30 |
Arulrajan A. C. ; Ramasamy D. L. ; Sillanpaa M. ; van der Wal A. ; Biesheuvel P. M. ; Porada S. ; Dykstra J. E. Adv. Mater. 2019, 31, e1806937.
doi: 10.1002/adma.201806937 |
31 |
Huang Z. H. ; Yang Z. ; Kang F. ; Inagaki M. J. Mater. Chem. A 2017, 5, 470.
doi: 10.1039/c6ta06733f |
32 | Wang L. ; Yu F. ; Ma J. Acta Phys. -Chim. Sin. 2017, 33, 1338. |
王雷; 于飞; 马杰. 物理化学学报, 2017, 33, 1338.
doi: 10.3866/PKU.WHXB201704113 |
|
33 |
Liu Y. ; Nie C. ; Liu X. ; Xu X. ; Sun Z. ; Pan L. RSC Adv. 2015, 5, 15205.
doi: 10.1039/c4ra14447c |
34 |
Tang K. ; Hong T. Z. X. ; You L. ; Zhou K. J. Mater. Chem. A 2019, 7, 26693.
doi: 10.1039/c9ta08663c |
35 |
Srimuk P. ; Su X. ; Yoon J. ; Aurbach D. ; Presser V. Nat. Rev. Mater. 2020, 5, 517.
doi: 10.1038/s41578-020-0193-1 |
36 |
Sun Z. ; Chai L. ; Liu M. ; Shu Y. ; Li Q. ; Wang Y. ; Wang Q. ; Qiu D. Sep. Purif. Technol. 2018, 191, 424.
doi: 10.1016/j.seppur.2017.09.015 |
37 |
Zhao W. ; Guo L. ; Ding M. ; Huang Y. ; Yang H. Y. ACS Appl. Mater. Interfaces 2018, 10, 40540.
doi: 10.1021/acsami.8b14014 |
38 |
Zhao W. ; Ding M. ; Guo L. ; Yang H. Y. Small 2019, 15, 1805505.
doi: 10.1002/smll.201805505 |
39 |
Yue Z. ; Ma Y. ; Zhang J. ; Li H. J. Mater. Chem. A 2019, 7, 16892.
doi: 10.1039/c9ta03570b |
40 |
Srimuk P. ; Husmann S. ; Presser V. RSC Adv. 2019, 9, 14849.
doi: 10.1039/c9ra02570g |
41 |
Ahn J. ; Lee J. ; Kim S. ; Kim C. ; Lee J. ; Biesheuvel P. M. ; Yoon J. Desalination 2020, 476, 114216.
doi: 10.1016/j.desal.2019.114216 |
42 |
Min X. ; Zhu M. ; He Y. ; Wang Y. ; Deng H. ; Wang S. ; Jin L. ; Wang H. ; Zhang L. ; Chai L. Chemosphere 2020, 251, 126319.
doi: 10.1016/j.chemosphere.2020.126319 |
43 |
Kong H. ; Yang M. ; Miao Y. ; Zhao X. Energy Technol. 2019, 7, 1900835.
doi: 10.1002/ente.201900835 |
44 |
Li D. ; Wang S. ; Wang G. ; Li C. ; Che X. ; Wang S. ; Zhang Y. ; Qiu J. ACS Appl. Mater. Interfaces 2019, 11, 31200.
doi: 10.1021/acsami.9b10307 |
45 |
Srimuk P. ; Kaasik F. ; Krüner B. ; Tolosa A. ; Fleischmann S. ; Jäckel N. ; Tekeli M. C. ; Aslan M. ; Suss M. E. ; Presser V. J. Mater. Chem. A 2016, 4, 18265.
doi: 10.1039/c6ta07833h |
46 |
Khan A. I. ; O'Hare D. J. Mater. Chem. 2002, 12, 3191.
doi: 10.1039/b204076j |
47 |
Long X. ; Wang Z. ; Xiao S. ; An Y. ; Yang S. Mater. Today 2016, 19, 213.
doi: 10.1016/j.mattod.2015.10.006 |
48 |
Lv L. ; Yang Z. ; Chen K. ; Wang C. ; Xiong Y. Adv. Energy Mater. 2019, 9, 1803358.
doi: 10.1002/aenm.201803358 |
49 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112, 4124.
doi: 10.1021/cr200434v |
50 |
Wang L. ; Wang D. ; Dong X. Y. ; Zhang Z. J. ; Pei X. F. ; Chen X. J. ; Chen B. ; Jin J. Chem. Commun. 2011, 47, 3556.
doi: 10.1039/c0cc05420h |
51 |
Wimalasiri Y. ; Fan R. ; Zhao X. S. ; Zou L. Electrochim. Acta 2014, 134, 127.
doi: 10.1016/j.electacta.2014.04.129 |
52 |
Quan W. ; Tang Z. L. ; Wang S. T. ; Hong Y. ; Zhang Z. T. Chem. Commun. 2016, 52, 3694.
doi: 10.1039/c5cc08744a |
53 |
Cai P. ; Zheng H. ; Wang C. ; Ma H. ; Hu J. ; Pu Y. ; Liang P. J. Hazard. Mater. 2012, 213-214, 100.
doi: 10.1016/j.jhazmat.2012.01.069 |
54 |
Wang J. ; Gao F. ; Du X. ; Ma X. ; Hao X. ; Ma W. ; Wang K. ; Guan G. ; Abudula A. Electrochim. Acta 2020, 331, 135288.
doi: 10.1016/j.electacta.2019.135288 |
55 |
Ren Q. ; Wang G. ; Wu T. ; He X. ; Wang J. ; Yang J. ; Yu C. ; Qiu J. Ind. Eng. Chem. Res. 2018, 57, 6417.
doi: 10.1021/acs.iecr.7b04983 |
56 |
Hu C. ; Dong J. ; Wang T. ; Liu R. ; Liu H. ; Qu J. Chem. Eng. J. 2018, 335, 475.
doi: 10.1016/j.cej.2017.10.167 |
57 |
Wang X. ; Kajiyama S. ; Iinuma H. ; Hosono E. ; Oro S. ; Moriguchi I. ; Okubo M. ; Yamada A. Nat. Commun. 2015, 6, 6544.
doi: 10.1038/ncomms7544 |
58 |
Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. Adv. Mater. 2014, 26, 992.
doi: 10.1002/adma.201304138 |
59 |
Pang J. ; Mendes R. G. ; Bachmatiuk A. ; Zhao L. ; Ta H. Q. ; Gemming T. ; Liu H. ; Liu Z. ; Rummeli M. H. Chem. Soc. Rev. 2019, 48, 72.
doi: 10.1039/c8cs00324f |
60 |
Ihsanullah I. Nano-Micro Lett. 2020, 12, 72.
doi: 10.1007/s40820-020-0411-9 |
61 |
Shen X. ; Xiong Y. ; Hai R. ; Yu F. ; Ma J. Environ. Sci. Technol. 2020, 54, 4554.
doi: 10.1021/acs.est.9b05759 |
62 |
Wang D. ; Gao Y. ; Liu Y. ; Gogotsi Y. ; Meng X. ; Chen G. ; Wei Y. J. Mater. Chem. A 2017, 5, 24720.
doi: 10.1039/c7ta09057a |
63 |
Cui H. ; Li Q. ; Qian Y. ; Tang R. ; An H. ; Zhai J. Water Res. 2011, 45, 5736.
doi: 10.1016/j.watres.2011.08.049 |
64 |
Silambarasan K. ; Joseph J. Energy Technol. 2019, 7, 1800601.
doi: 10.1002/ente.201800601 |
65 |
Li Y. ; Ding Z. ; Li J. ; Wang K. ; Lu T. ; Pan L. Desalination 2020, 481, 114379.
doi: 10.1016/j.desal.2020.114379 |
66 |
Shi Y. ; Zhou X. ; Yu G. Acc. Chem. Res. 2017, 50, 2642.
doi: 10.1021/acs.accounts.7b00402 |
67 |
Wang Z. ; Xu X. ; Kim J. ; Malgras V. ; Mo R. ; Li C. ; Lin Y. ; Tan H. ; Tang J. ; Pan L. ; et al Mater. Horiz. 2019, 6, 1433.
doi: 10.1039/c9mh00306a |
68 |
Dai J. ; Wang J. ; Hou X. ; Ru Q. ; He Q. ; Srimuk P. ; Presser V. ; Chen F. ChemSusChem 2020, 13, 2792.
doi: 10.1002/cssc.202000188 |
69 |
Dai J. ; Pyae N. L. W. ; Chen F. ; Liang M. ; Wang S. ; Ramalingam K. ; Zhai S. ; Su C. ; Shi Y. ; Tan S. C. ; et al ACS Appl. Mater. Interfaces 2020, 12, 25728.
doi: 10.1021/acsami.0c02822 |
70 |
Zhao X. ; Ren S. ; Bruns M. ; Fichtner M. J. Power Sources 2014, 245, 706.
doi: 10.1016/j.jpowsour.2013.07.001 |
71 |
Gao P. ; Reddy M. A. ; Mu X. ; Diemant T. ; Zhang L. ; Zhao-Karger Z. ; Chakravadhanula V. S. ; Clemens O. ; Behm R. J. ; Fichtner M. Angew. Chem. Int. Ed. 2016, 55, 4285.
doi: 10.1002/anie.201509564 |
72 |
Lakshmi K. P. ; Janas K. J. ; Shaijumon M. M. J. Power Sources 2019, 433, 126685.
doi: 10.1016/j.jpowsour.2019.05.091 |
73 |
Zhao X. ; Zhao Z. ; Yang M. ; Xia H. ; Yu T. ; Shen X. ACS Appl. Mater. Interfaces 2017, 9, 2535.
doi: 10.1021/acsami.6b14755 |
74 |
Zhao Z. ; Yu T. ; Miao Y. ; Zhao X. Electrochim. Acta 2018, 270, 30.
doi: 10.1016/j.electacta.2018.03.077 |
75 |
Yu T. ; Yang R. ; Zhao X. ; Shen X. ChemElectroChem 2019, 6, 1761.
doi: 10.1002/celc.201801803 |
76 |
Yang R. ; Yu T. ; Zhao X. J. Alloys Compd. 2019, 788, 407.
doi: 10.1016/j.jallcom.2019.02.234 |
77 |
Chen F. ; Leong Z. Y. ; Yang H. Y. Energy Storage Mater. 2017, 7, 189.
doi: 10.1016/j.ensm.2017.02.001 |
78 |
Hu X. ; Chen F. ; Wang S. ; Ru Q. ; Chu B. ; Wei C. ; Shi Y. ; Ye Z. ; Chu Y. ; Hou X. ; et al ACS Appl. Mater. Interfaces 2019, 11, 9144.
doi: 10.1021/acsami.8b21652 |
79 |
Yin Q. ; Rao D. ; Zhang G. ; Zhao Y. ; Han J. ; Lin K. ; Zheng L. ; Zhang J. ; Zhou J. ; Wei M. Adv. Funct. Mater. 2019, 29, 1900983.
doi: 10.1002/adfm.201900983 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[3] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[4] | Shenglong Tang, Chunlei Wang, Xiangjun Pu, Xiangkui Gu, Zhongxue Chen. Unravelling Zn2+ Intercalation Mechanism in TiX2 (X = S, Se) Anodes for Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212037-0. |
[5] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[6] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[7] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[8] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[9] | Jingjing Wang, Guiqiang Cao, Ruixian Duan, Xiangyang Li, Xifei Li. Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212005-0. |
[10] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[11] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[12] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[13] | Mochun Zhang, Shuo Feng, Yunling Wu, Yanguang Li. Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205050-0. |
[14] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[15] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
|