Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2007070.doi: 10.3866/PKU.WHXB202007070
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Han Wang1, Hanwen An1, Hongmei Shan2, Lei Zhao1, Jiajun Wang1,*()
Received:
2020-07-25
Accepted:
2020-08-20
Published:
2020-08-26
Contact:
Jiajun Wang
E-mail:jiajunhit@hit.edu.cn
About author:
Jiajun Wang, Email: jiajunhit@hit.edu.cn; Tel.: +86-451-86412114Supported by:
Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(11), 2007070. doi: 10.3866/PKU.WHXB202007070
Fig 3
Modification of solid-state electrolyte. (a) Schematic of synthetic steps of LLTO framework composite electrolytes; (b) Electrochemical properties of LLTO composite electrolyte; (c) Schematics of conduction mechanism in composite electrolytes with agglomerated nanoparticles and LLTO framework 29. "
Fig 6
Schematic representation of element diffusion and interface reaction. (a) Cross-sectional high-angle annular dark field (HAADF) TEM images of the interface between the LiCoO2 electrode and the Li2S-P2S5 solid electrolyte 8; (b) Schematic of the experimental setup of nanobattery mounted on a TEM grid and electrochemical profile of the in situ cell 61. "
Fig 7
Schematic diagram of positive fragmentation and interface reaction characterization. (a) and (b) X-ray nano-tomography reconstruction with volume rendering shows the morphological evolution of NCM after cycling. (c) and (d) SEM images of the NCM microsphere after 100 and 200 cycles. (e) Operando 2D chemical phase mappings at the Ni K-edge of NCM particles during the first and 201st cycles. (f) SEM image and SAM mapping of Mn, S, and Cl elements from a cross-section of the composite LMO electrode after 22 cycles 65. "
1 |
Hoshina K. ; Dokko K. ; Kanamura K. J. Electrochem. Soc. 2005, 152, A2138.
doi: 10.1149/1.2041967 |
2 |
Huo H. Y. ; Liang J. N. ; Zhao N. ; Li X. N. ; Lin X. T. ; Zhao Y. ; Adair K. ; Li R. Y. ; Guo X. X. ; Sun X. L. ACS Energy Lett. 2020, 5, 2156.
doi: 10.1021/acsenergylett.0c00789 |
3 |
Huo H. Y. ; Sun J. Y. ; Chen C. ; Meng X. L. ; He M. H. ; Zhao N. ; Guo X. X. J. Power Sources 2018, 383, 150.
doi: 10.1016/j.jpowsour.2018.02.026 |
4 |
Yamamoto K. ; Yoshida R. ; Sato T. ; Matsumoto H. ; Kurobe H. ; Hamanaka T. ; Kato T. ; Iriyama Y. ; Hirayama T. J. Power Sources 2014, 266, 414.
doi: 10.1016/j.jpowsour.2014.04.154 |
5 |
Haruyama J. ; Sodeyama K. ; Han L. Y. ; Takada K. ; Tateyama Y. Chem. Mater. 2014, 26, 4248.
doi: 10.1021/cm5016959 |
6 |
Zhang W. B. ; Richter F. H. ; Culver S. P. ; Leichtweiss T. ; Lozano J. G. ; Dietrich C. ; Bruce P. G. ; Zeier W. G. ; Janek J. ACS Appl. Mater. Interfaces 2018, 10, 22226.
doi: 10.1021/acsami.8b05132 |
7 |
Wenzel S. ; Randau S. ; Leichtwei T. ; Weber D. A. ; Sann J. ; Zeier W. G. ; Janek J. Chem. Mater. 2016, 28, 2400.
doi: 10.1021/acs.chemmater.6b00610 |
8 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. Chem. Mater. 2010, 22, 949.
doi: 10.1021/cm901819c |
9 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. R. ; Wang Z. F. ; Yang W. J. ; Hu C. C. ; Luo W. ; Huang Y. H. Angew. Chem. Int. Ed. 2020, 59, 3699.
doi: 10.1002/anie.201914417 |
10 |
Xia Y. Y. ; Fujieda T. ; Tatsumi K. ; Prosini P. P. ; Sakai T. J. Power Sources 2001, 92, 234.
doi: 10.1016/S0378-7753(00)00533-4 |
11 |
Zhang D. C. ; Zhang L. ; Yang K. ; Wang H. Q. ; Yu C. ; Xu D. ; Xu B. ; Wang L. M. ACS Appl. Mater. Interfaces 2017, 9, 36886.
doi: 10.1021/acsami.7b12186 |
12 |
Xu B ; Y . ; Li W. L. ; Duan H. N. ; Wang H. J. ; Guo Y. P. ; Li H. ; Liu H. Z. J. Power Sources 2017, 354, 68.
doi: 10.1016/j.jpowsour.2017.04.026 |
13 |
Fu K. ; Gong Y. H. ; Fu Z. Z. ; Xie H. ; Yao Y. G. ; Liu B. Y. ; Carter M. ; Wachsman E. ; Hu L. B. Angew. Chem. Int. Ed. 2017, 56, 14942.
doi: 10.1002/anie.201708637 |
14 |
Xiong S. Z. ; Liu Y. Y. ; Jankowski P. ; Liu Q. ; Nitze F. ; Xie K. ; Song J. X. ; Matic A. Adv. Funct. Mater. 2020, 30, 2001444.
doi: 10.1002/adfm.202001444 |
15 |
Kato A. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2016, 309, 27.
doi: 10.1016/j.jpowsour.2016.01.068 |
16 |
Wakasugi J. ; Munakata H. ; Kanamura K. J. Electrochem. Soc. 2017, 164, A1022.
doi: 10.1149/2.0471706jes |
17 |
Han F. D. ; Westover A. S. ; Yue J. ; Fan X. L. ; Wang F. ; Chi M. F. ; Leonard D. N. ; Dudney N. ; Wang H. ; Wang C. S. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
18 |
Han X. G. ; Gong Y. H. ; Fu K. ; He X. F. ; Hitz G. T. ; Dai J. Q. ; Pearse A. ; Liu B. Y. ; Wang H. ; Rublo G. ; et al Nat. Mater. 2017, 16, 572.
doi: 10.1038/NMAT4821 |
19 |
Feng W. L. ; Dong X. L. ; Li P. L. ; Wang Y. G. ; Xia Y. Y. J. Power Sources 2019, 419, 91.
doi: 10.1016/j.jpowsour.2019.02.066 |
20 |
Deng T. ; Ji X. ; Zhao Y. ; Cao L. S. ; Li S. ; Hwang S. ; Luo C. ; Wang P. F. ; Jia H. P. ; Fan X. L. Adv. Mater. 2020, 32, 2000030.
doi: 10.1002/adma.202000030 |
21 |
Huo H. Y. ; Chen Y. ; Li R. Y. ; Zhao N. ; Luo J. ; da Silva J. G. P. ; Mucke R. ; Kaghazchi P. ; Guo X. X. ; Sun X. L. Energy Environ. Sci. 2020, 13, 127.
doi: 10.1039/c9ee01903k |
22 |
Manthiram A. ; Yu X. W. ; Wang S. F. Nat. Rev. Mater. 2017, 2, 16103.
doi: 10.1038/natrevmats.2016.103 |
23 | Jin F. ; Li J. ; Hu C. J. ; Dong H. C. ; Chen P. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399. |
金锋; 李静; 胡晨吉; 董厚才; 陈鹏; 沈炎宾; 陈立桅. 物理化学学报, 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085 |
|
24 | Du A. B. ; Chai J. C. ; Zhang J. J. ; Liu Z. H. ; Cui G. L. Energy Storage Sci. Technol. 2016, 5, 627. |
杜奥冰; 柴敬超; 张建军; 刘志宏; 崔光磊. 储能科学与技术, 2016, 5, 627.
doi: 10.12028/j.issn.2095-4239.2016.0020 |
|
25 | Li Y. ; Ding F. ; Sang L. ; Zhong H. ; Liu X. J. Energy Storage Sci. Technol. 2016, 5, 615. |
李杨; 丁飞; 桑林; 钟海; 刘兴江. 储能科学与技术, 2016, 5, 615.
doi: 10.12028/j.issn.2095-4239.2016.0043 |
|
26 |
Huo H. Y. ; Zhao N. ; Sun J. Y. ; Du F. M. ; Li Y. Q. ; Guo X. X. J. Power Sources 2017, 372, 1.
doi: 10.1016/j.jpowsour.2017.10.059 |
27 |
Huo H. Y. ; Li X. N. ; Sun Y. P. ; Lin X. T. ; Kieran D. D. ; Liang J. W. ; Gao X. J. ; Li R. Y. ; Huang H. ; Guo X. X. ; et al Nano Energy 2020, 73, 104836.
doi: 10.1016/j.nanoen.2020.104836 |
28 |
Huo H. Y. ; Chen Y. ; Luo J. ; Yang X. F. ; Guo X. X. Adv. Energy Mater. 2019, 9, 1804004.
doi: 10.1002/aenm.201804004 |
29 |
Bae J. ; Li Y. T. ; Zhang J. ; Zhou X. Y. ; Zhao F. ; Shi Y. ; Goodenough J. B. ; Yu G. H. Angew. Chem. Int. Ed. 2018, 57, 2096.
doi: 10.1002/anie.201710841 |
30 |
Liu Q. ; Liu Y. Y. ; Jiao X. X. ; Song Z. X. ; Sadd M. ; Xu X. X. ; Matic A. ; Xiong S. Z. ; Song J. X. Energy Storage Mater. 2019, 23, 105.
doi: 10.1016/j.ensm.2019.05.023 |
31 |
Cao Y. ; Zuo P. J. ; Lou S. F. ; Sun Z. ; Li Q. ; Huo H. ; Ma Y. L. ; Du C. Y. ; Gao Y. Z. ; Yin G. P. J. Mater. Chem. A 2019, 7, 6533.
doi: 10.1039/c9ta00146h |
32 |
Li Y. T. ; Chen X. ; Dolocan A. ; Cui Z. M. ; Xin S. ; Xue L. G. ; Xu H. H. ; Park K. ; Goodenough J. B. J. Am. Chem. Soc. 2018, 140, 6448.
doi: 10.1021/jacs.8b03106 |
33 |
Huo H. Y. ; Chen Y. ; Zhao N. ; Lin X. T. ; Luo J. ; Yang X. F. ; Liu Y. L. ; Guo X. X. ; Sun X. L. Nano Energy 2019, 61, 119.
doi: 10.1016/j.nanoen.2019.04.058 |
34 |
Huo H. Y. ; Luo J. ; Thangadurai V. ; Guo X. X. ; Nan C. W. ; Sun X. L. ACS Energy Lett. 2020, 5, 252.
doi: 10.1021/acsenergylett.9b02401 |
35 |
Liang J. W. ; Chen N. ; Li X. N. ; Li X. ; Adair K. R. ; Li J. J. ; Wang C. H. ; Yu C. ; Banis M. N. ; Zhang L. ; et al Chem. Mater. 2020, 32, 2664.
doi: 10.1021/acs.chemmater.9b04764 |
36 |
Lepley N. D. ; Holzwarth N. A. W. ; Du Y. J. A. Phys. Rev. B 2013, 88, 104103.
doi: 10.1103/PhysRevB.88.104103 |
37 |
Ong S. P. ; Mo Y. F. ; Richards W. D. ; Miara L. ; Lee H. S. ; Ceder G. Energy Environ. Sci. 2013, 6, 148.
doi: 10.1039/c2ee23355j |
38 |
Wu F. ; Fitzhugh W. ; Ye L. h. ; Ning J. X. ; Li X. Nat. Commun. 2018, 9, 4037.
doi: 10.1038/s41467-018-06123-2 |
39 |
Zhou W. D. ; Wang S. F. ; Li Y. T. ; Xin S. ; Manthiram A. ; Goodenough J. B. J. Am. Chem. Soc. 2016, 138, 9385.
doi: 10.1021/jacs.6b05341 |
40 |
Wu J. F. ; Pang W. K. ; Peterson V. K. ; Wei L. ; Guo X. ACS Appl. Mater. Interfaces 2017, 9, 12461.
doi: 10.1021/acsami.7b00614 |
41 |
Du F. M. ; Zhao N. ; Li Y. Q. ; Chen C. ; Liu Z. W. ; Guo X. X. J. Power Sources 2015, 300, 24.
doi: 10.1016/j.jpowsour.2015.09.061 |
42 |
Li H. Q. ; Liu F. Y. ; Li Z. Y. ; Wang S. F. ; Jin R. H. ; Liu C. Y. ; Chen Y. M. ACS Appl. Mater. Interfaces 2019, 11, 17925.
doi: 10.1021/acsami.9b06754 |
43 |
Cao D. X. ; Zhang Y. B. ; Nolan A. M. ; Sun X. ; Liu C. ; Sheng J. Z. ; Mo Y. F. ; Wang Y. ; Zhu H. L. Nano Lett. 2020, 20, 1483.
doi: 10.1021/acs.nanolett.9b02678 |
44 |
Wang L. P. ; Zhang X. D. ; Wang T. S. ; Yin Y. X. ; Shi J. L. ; Wang C. R. ; Guo Y. G. Adv. Energy Mater. 2018, 8, 1801528.
doi: 10.1002/aenm.201801528 |
45 |
Ohta N. ; Takada K. ; Zhang L. Q. ; Ma R. Z. ; Osada M. ; Sasaki T. Adv. Mater. 2006, 18, 2226.
doi: 10.1002/adma.200502604 |
46 |
Takada K. Langmuir 2013, 29, 7538.
doi: 10.1021/la3045253 |
47 |
Liang J. Y. ; Zeng X. X. ; Zhang X. D. ; Wang P. F. ; Ma J. Y. ; Yin Y. X. ; Wu X. W. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 140, 6767.
doi: 10.1021/jacs.8b03319 |
48 |
Liang J. Y. ; Zeng X. X. ; Zhang X. D. ; Zuo T. T. ; Yan M. ; Yin Y. X. ; Shi J. L. ; Wu X. W. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2019, 141, 9165.
doi: 10.1021/jacs.9b03517 |
49 |
Yan H. F. ; Voorhees P. W. ; Xin H. L. L. MRS Bull. 2020, 45, 264.
doi: 10.1557/mrs.2020.90 |
50 |
Hovden R. ; Muller D. A. MRS Bull. 2020, 45, 298.
doi: 10.1557/mrs.2020.87 |
51 |
Yu Z. J. ; Wang J. J. ; Wang L. G. ; Xie Y. ; Lou S. F. ; Jiang Z. X. ; Ren Y. ; Lee S. ; Zuo P. J. ; Huo H. ; et al ACS Energy Lett. 2019, 4, 2007.
doi: 10.1021/acsenergylett.9b01347 |
52 |
Yu Z. J. ; Wang J. J. ; Liu Y. J. MRS Bull. 2020, 45, 283.
doi: 10.1557/mrs.2020.86 |
53 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Baudry P. ; Lascaud S. Electrochim. Acta 1998, 43, 1569.
doi: 10.1016/S0013-4686(97)10055-X |
54 |
Ren Y. Y. ; Shen Y. ; Lin Y. H. ; Nan C. W. Electrochem. Commun. 2015, 57, 27.
doi: 10.1016/j.elecom.2015.05.001 |
55 |
Golozar M. ; Hovington P. ; Paolella A. ; Bessette S. ; Lagace M. ; Bouchard P. ; Demers H. ; Gauvin R. ; Zaghib K. Nano Lett. 2018, 18, 7583.
doi: 10.1021/acs.nanolett.8b03148 |
56 |
Harry K. J. ; Hallinan D. T. ; Parkinson D. Y. ; MacDowell A. A. ; Balsara N. P. Nat. Mater. 2014, 13, 69.
doi: 10.1038/NMAT3793 |
57 |
Gittleson F. S. ; El Gabaly F. Nano Lett. 2017, 17, 6974.
doi: 10.1021/acs.nanolett.7b03498 |
58 |
Zarabian M. ; Bartolini M. ; Pereira-Almao P. ; Thangadurai V. J. Electrochem. Soc. 2017, 164, A1133.
doi: 10.1149/2.0621706jes |
59 |
Park K. ; Yu B. C. ; Jung J. W. ; Li Y. T. ; Zhou W. D. ; Gao H. C. ; Son S. ; Goodenough J. B. Chem. Mater. 2016, 28, 8051.
doi: 10.1021/acs.chemmater.6b03870 |
60 |
Hovington P. ; Lagace M. ; Guerfi A. ; Bouchard P. ; Manger A. ; Julien C. M. ; Armand M. ; Zaghib K. Nano Lett. 2015, 15, 2671.
doi: 10.1021/acs.nanolett.5b00326 |
61 |
Wang Z. Y. ; Santhanagopalan D. ; Zhang W. ; Wang F. ; Xin H. L. L. ; He K. ; Li J. C. ; Dudney N. ; Meng Y. S. Nano Lett. 2016, 16, 3760.
doi: 10.1021/acs.nanolett.6b01119 |
62 |
Sun N. ; Liu Q. S. ; Cao Y. ; Lou S. F. ; Ge M. Y. ; Xiao X. H. ; Lee W. K. ; Gao Y. Z. ; Yin G. P. ; Wang J. J. Angew. Chem. Int. Ed. 2019, 58, 18647.
doi: 10.1002/anie.201910993 |
63 |
Nakayama M. ; Wada S. ; Kuroki S. ; Nogami M. Energy Environ. Sci. 2010, 3, 1995.
doi: 10.1039/c0ee00266f |
64 |
Auvergniot J. ; Cassel A. ; Ledeuil J. B. ; Viallet V. ; Seznec V. ; Dedryvere R. Chem. Mater. 2017, 29, 3883.
doi: 10.1021/acs.chemmater.6b04990 |
65 |
Zhang F. ; Lou S. F. ; Li S. ; Yu Z. J. ; Liu Q. S. ; Dai A. ; Cao C. T. ; Toney M. F. ; Ge M. Y. ; Wang J. J. ; et al Nat. Commun. 2020, 11, 3050.
doi: 10.1038/s41467-020-16824-2 |
66 |
Besli M. M. ; Xia S. H. ; Kuppan S. ; Huang Y. Q. ; Metzger M. ; Shukla A. K. ; Schneider G. ; Hellstrom S. ; Christensen J. ; Doeff M. M. ; et al Chem. Mater. 2019, 31, 491.
doi: 10.1021/acs.chemmater.8b04418 |
[1] | Chun-An Huo, Sheng-Jie Qiu, Qing-Man Liang, Bi-Jun Geng, Zhi-Chao Lei, Gan Wang, Yu-Ling Zou, Zhong-Qun Tian, Yang Yang. Progress in the Trapping and Manipulation Volume of Optical Tweezers [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303037-. |
[2] | Ganchang Lei, Yong Zheng, Yanning Cao, Lijuan Shen, Shiping Wang, Shijing Liang, Yingying Zhan, Lilong Jiang. Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2210038-0. |
[3] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[4] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[5] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[6] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[7] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[8] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[9] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[10] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[11] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[12] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[13] | Yuhao Yin, Yang Shen, Hu Wang, Xiao Chen, Lin Shao, Wenyu Hua, Juan Wang, Yi Cui. In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006016-. |
[14] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[15] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
|