Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2008066.doi: 10.3866/PKU.WHXB202008066
Special Issue: CO2 Reduction
• ARTICLE • Previous Articles Next Articles
Frits Mathias Dautzenberg1,*(), Yong Lu2, Bin Xu3
Received:
2020-08-23
Accepted:
2020-09-18
Published:
2020-09-21
Contact:
Frits Mathias Dautzenberg
E-mail:fritsd@serenixcorp.com
About author:
Frits Mathias Dautzenberg, Email: fritsd@serenixcorp.comFrits Mathias Dautzenberg, Yong Lu, Bin Xu. Controlling the Global Mean Temperature by Decarbonization[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2008066. doi: 10.3866/PKU.WHXB202008066
"
T/℃ | T/K | ΔHf/(kJ·mol-1) | ΔHvap/(kJ·mol-1) | Cp/(kJ·mol-1·K-1) | a/℃/(10-6(v)) |
25.00 | 298.15 | -241.89 | 44.54 | 0.07537 | 2.6182 × 10-3 |
13.50 | 286.65 | -242.27 | 43.98 | 0.07560 | 2.6227 × 10-3 |
13.95 | 287.10 | -242.25 | 44.01 | 0.07559 | 2.6226 × 10-3 |
14.50 | 287.65 | -242.23 | 44.03 | 0.07558 | 2.6225 × 10-3 |
15.10 | 288.25 | -242.21 | 44.06 | 0.07556 | 2.6224 × 10-3 |
15.50 | 288.65 | -242.20 | 44.08 | 0.07555 | 2.6223 × 10-3 |
16.00 | 289.15 | -242.18 | 44.10 | 0.07554 | 2.6221 × 10-3 |
16.50 | 289.65 | -242.17 | 44.13 | 0.07553 | 2.6220 × 10-3 |
17.00 | 290.15 | -242.15 | 44.15 | 0.07552 | 2.6219 × 10-3 |
"
T/℃ | T/K | ΔHf/(kJ·mol-1) | Cp/(kJ·mol-1·K-1) | b/℃/(10-6(v)) |
13.50 | 286.65 | -393.95 | 37.40 | 1.0532 × 10-2 |
13.95 | 287.10 | -393.93 | 37.42 | 1.0526 × 10-2 |
14.50 | 287.65 | -393.91 | 37.45 | 1.0519 × 10-2 |
15.10 | 288.25 | -393.89 | 37.47 | 1.0511 × 10-2 |
15.50 | 288.65 | -393.88 | 37.49 | 1.0506 × 10-2 |
16.00 | 289.15 | -393.86 | 37.51 | 1.0499 × 10-2 |
16.50 | 289.65 | -393.84 | 37.53 | 1.0493 × 10-2 |
17.00 | 290.15 | -393.82 | 37.56 | 1.0486 × 10-2 |
1 | Hausfather, Z.; Drake, H. F.; Abott, T.; Schmidt, G. A. Geophys. Res. Lett. 2020, 47 (1), e2019GL085378. doi: 10.1029/2019GL085378 |
2 | Intergovernmental Panel on Climate Change (IPCC) Reports, 1990-2019. https://www.ipcc.ch (accessed on Sep. 18, 2020). |
3 | GISS Surface Temperature Analysis (GISTEMP v4), version 4, 2019. https://data.giss.nasa.gov/gistemp (accessed on Sep. 18 2020). |
4 | Buis, A. Study conforms climate models are getting future warming projections right. https://climate.nasa.gov/news/2943/study-confirms-climate-models-are-getting-future-warming-projections-right/ (accessed on Sep. 18 2020). |
5 | Moore, P. A. Confessions of a Greenpeace Dropout; Beatty Street Publishing Inc.: Vancouver, BC, Canada, 2013. |
6 | Spencer, R. W. The Greatest Global Warming Blunder: How Mother Nature Fooled the World's Top Climate Scientists; Encounter Books: New York, NY, USA, 2010. |
7 |
Petit J. R. ; Jouzel J. ; Raynaud D. ; Barkov N. I. ; Barnola J.-M. ; Basile I. ; Bender M. ; Chappellaz J. ; Davis M. ; Delaygue G. ; et al Nature 1999, 399 (6735), 429.
doi: 10.1038/20859 |
8 | Bohren, C. F.; Clothiaux, E. E. Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. |
9 | www.geo.utexas.edu/courses/387H/Lectures/chap2.pdf (accessed on Sep. 18 2020). |
10 | https://www.nist.gov/publications/web-thermo-tables-line-version-trc-thermodynamics-table (accessed on Sep. 18, 2020). |
11 | Yaws, C. L. Chemical Properties Handbook; McGraw-Hill: New York, NY, USA, 1999; p. 291 and p. 310. |
12 |
Cox P. M. ; Huntingford C. ; Williamson M. S. Nature 2018, 533 (7688), 319.
doi: 10.1038/nature25450 |
13 | Deser, C. Making Sense of Climate Projections. Lecture at the University of Washington, Department of Atmospheric Sciences: Seattle, WA, USA, 2019. |
14 | http://www.scotese.com/earth.htm. (accessed on Sep. 18 2020) |
15 | Ruddiman, W. F. Earth's Climate: Past and Future, 3rd ed.; W.H. Freeman & Sons: New York, NY, USA, 2013. |
16 |
Pagani M. ; Zachos J. C. ; Freeman K. H. ; Tipple B. ; Bohaty S. Science 2005, 309 (5734), 600.
doi: 10.1126/science.1110063 |
17 | https://www.sciencemag.org/news/2019/05/500-million-year-survey-earths-climate-reveals-dire-warning-humanity (accessed on Sep. 18 2020). |
18 | Moore, P. A. Climate Realism. Presentation at the Climate Realism seminar, Toronto, Canada, October, 2019. |
19 | https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions (accessed on Sep. 18, 2020). |
20 |
Abbot J. ; Marohasy J. Geo. Res. J. 2017, 14, 36.
doi: 10.1016/j.grj.2017.08.001 |
21 | https://www.therightinsight.org/Patrick-Moore-Should-We-Celebrate-CO2 (accessed on Sep. 18, 2020). |
22 | Hawken, P. Drawdown-The Most Comprehensive Plan Ever Proposed to Reverse Global Warming; Penguin Books, New York, NY, USA, 2017. |
23 | Henson, R. The Thinking Person's Guide to Climate Change, 2nd ed.; The American Meteorological Society: Boston, MA, USA, 2019. |
24 | Vertes, A.; Qureshi, N.; Yukawa, H.; Blaschek, H. Biomass to Biofuels: Strategies for Global Industries. John Wiley & Sons LTD.: Chicher, West Sussex, UK, 2010. |
25 |
Anastassiadis S. G. World J. Bio. Biotechnol. 2016, 1 (1), 1.
doi: 10.33865/wjb.001.01.0002 |
26 |
Han L. ; Ro K. S. ; Sun K. ; Sun H. ; Wang Z. ; Libra J. A. ; Xing B. Environ. Sci. Technol. 2016, 50 (24), 13274.
doi: 10.1021/acs.est.6b02401 |
27 | Doucet, F. J. Scoping Study on CO2 Mineralization Technologies. Report No. CGS-2011-007-Prepared for South African Centre for Carbon Capture and Storage, 2011. |
28 |
Xie H. ; Yue H. ; Zhu J. ; Liang B. ; Li C. ; Wang Y. ; Xie L. ; Zhou X. Engineering 2015, 1 (1), 150.
doi: 10.15302/J-ENG-2015017 |
29 | https://www.theleadsouthaustria.com.au, Willis, B. Global carbon capture potential for rare nanoparticles, 2020, March 24 (accessed on Sep. 18, 2020). |
30 | Dean, C. Expert Discuss Engineering Feats, Like Space Mirrors to Slow Climate Change; The New York Times: New York, NY, USA, Nov. 10, 2007. |
31 | Gramling, C. In a Climate Crisis, Is Geoengineering Worth the Risks? Science News; Society for Science & the Public: Washington DC, USA, Oct. 6, 2019. |
32 | www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html (accessed on Sep. 18, 2020). |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[3] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[4] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[5] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[6] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[7] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[8] | Yutong Wan, Fan Fang, Ruixue Sun, Jie Zhang, Kun Chang. Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212042-. |
[9] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[10] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[11] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[12] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[13] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[14] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[15] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
|