Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (6): 2210003.doi: 10.3866/PKU.WHXB202210003
Special Issue: S-scheme photocatalyst
• ARTICLE • Previous Articles Next Articles
Ji-Chao Wang1,3,*(), Xiu Qiao1, Weina Shi2,*(
), Jing He1, Jun Chen1, Wanqing Zhang1
Received:
2022-10-05
Accepted:
2022-11-14
Published:
2022-11-17
Contact:
Ji-Chao Wang, Weina Shi
E-mail:wangjichao@hist.edu.cn;shiweina516@163.com
Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2210003. doi: 10.3866/PKU.WHXB202210003
1 |
Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9 (7),2177.
doi: 10.1039/c6ee00383d |
2 |
Xu, Z.-T.; Xie, K. Chin. J. Struct. Chem. 2021, 40 (1),31.
doi: 10.14102/j.cnki.0254–5861.2011–2744 |
3 |
Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222.
doi: 10.1016/j.mattod.2019.06.009 |
4 |
Fung, C.-M.; Tang, J.-Y.; Tan, L.-L.; Mohamed, A. R.; Chai, S.-P. Mater. Today Sustain. 2020, 9, 100037.
doi: 10.1016/j.mtsust.2020.100037 |
5 |
Pan, R.; Liu, J.; Zhang, J. ChemNanoMat 2021, 7 (7),737.
doi: 10.1002/cnma.202100087 |
6 | Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Acta Phys. -Chim. Sin. 2021, 37, 2011033. |
王则鉴, 洪佳佳, Ng Sue-Faye, 刘雯, 黄俊杰, 陈鹏飞, Ong, W. -J. 物理化学学报, 2021, 37, 2011033.
doi: 10.3866/PKU.WHXB202011033 |
|
7 | He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Acta Phys. -Chim. Sin. 2022, 38, 2201021. |
何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫 物理化学学报, 2022, 38, 2201021.
doi: 10.3866/PKU.WHXB202201021 |
|
8 |
Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Chin. J. Catal. 2022, 43 (7),1906.
doi: 10.1016/s1872-2067(21)64018-4 |
9 |
Liu, S.-H.; Li, Y.; Ding, K.-N.; Chen, W.-K.; Zhang, Y.-F.; Lin, W. Chin. J. Struct. Chem. 2020, 39 (12),2068.
doi: 10.14102/j.cnki.0254–5861.2011–3005 |
10 |
Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater. 2021, 11 (8),2003159.
doi: 10.1002/aenm.202003159 |
11 |
Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Ahmad, M.; Ahmed, E.; Liu, Y.; Hussain, A.; Iqbal, S.; Ullah, S. Adv. Colloid Interface Sci. 2022, 304, 102661.
doi: 10.1016/j.cis.2022.102661 |
12 |
Wu, J.; Wang, S.; Qi, J.; Li, D.; Zhang, Z.; Liu, G.; Feng, Y. Mater. Today Energy 2022, 28, 101065.
doi: 10.1016/j.mtener.2022.101065 |
13 |
Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J. 2016, 291, 39.
doi: 10.1016/j.cej.2016.01.032 |
14 |
Lan, M.; Wang, M.; Zheng, N.; Dong, X.; Wang, Y.; Gao, J. J. Ind. Eng. Chem. 2022, 108, 109.
doi: 10.1016/j.jiec.2021.12.031 |
15 |
Li, H.; Wang, D.; Miao, C.; Xia, F.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. J. Environ. Chem. Eng. 2022, 10 (4),108201.
doi: 10.1016/j.jece.2022.108201 |
16 |
Li, Y.; Luo, H.; Bao, Y.; Guo, S.; Lei, D.; Chen, Y. Sol. RRL 2021, 2100051.
doi: 10.1002/solr.202100051 |
17 |
Liu, X.; Xiao, J.; Ma, S.; Shi, C.; Pan, L.; Zou, J. J. ChemNanoMat 2021, 7 (7),684.
doi: 10.1002/cnma.202100105 |
18 |
Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. Appl. Catal. B 2016, 199, 75.
doi: 10.1016/j.apcatb.2016.06.020 |
19 |
Zhong, S.; Wang, B.; Zhou, H.; Li, C.; Peng, X.; Zhang, S. J. Alloy. Compd. 2019, 806, 401.
doi: 10.1016/j.jallcom.2019.07.223 |
20 |
Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G. ACS Sustainable Chem. Eng. 2019, 7 (8),7900.
doi: 10.1021/acssuschemeng.9b00548 |
21 |
Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Chang, W.; Sun, T.; Shen, C.; Wei, G. J. Alloys Compd. 2021, 864, 15874.
doi: 10.1016/j.jallcom.2021.158784 |
22 |
Alzamly, A.; Bakiro, M.; Ahmed, S. H.; Sallabi, S. M.; Al Ajeil, R. A.; Alawadhi, S. A.; Selem, H. A.; Al Meshayei, S. S. M.; Khaleel, A.; Al-Shamsi, N.; et al. J. Photochem. Photobiol. A 2019, 375, 30.
doi: 10.1016/j.jphotochem.2019.01.031 |
23 |
Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Sci. Rep. 2017, 7 (1),11665.
doi: 10.1038/s41598-017-12266-x |
24 |
Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. J. Phys. Chem. Lett. 2022, 7987.
doi: 10.1021/acs.jpclett.2c02153 |
25 |
Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007.
doi: 10.14102/j.cnki.0254-5861.2021-0026 |
26 |
Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Chin. J. Catal. 2020, 41 (1),154.
doi: 10.1016/s1872-2067(19)63475-3 |
27 |
Cheng, L.; Zhang, D.; Liao, Y.; Fan, J.; Xiang, Q. Chin. J. Catal. 2021, 42 (1),131.
doi: 10.1016/s1872-2067(20)63623-3 |
28 |
Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034.
doi: 10.14102/j.cnki.0254-5861.2021-0046 |
29 |
Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119 (6),3962.
doi: 10.1021/acs.chemrev.8b00400 |
30 |
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
31 |
Xu. Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6 (7),1543.
doi: 10.1016/j.chempr.2020.06.010 |
32 |
Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Chem. Phys. Lett. 2022, 13 (36),8462.
doi: 10.1021/acs.jpclett.2c02125 |
33 |
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11),2107668.
doi: 10.1002/adma.202107668 |
34 | Wageh, S.; Al-Ghamdi, A, A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37 (6),2010024. |
Wageh, S.; Al-Ghamdi, A, A.; 刘丽君 物理化学学报, 2021, 37 (6),2010024.
doi: 10.3866/PKU.WHXB202010024 |
|
35 | Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37 (6),2009030. |
李云锋, 张敏, 周亮, 杨思佳, 武占省, 马玉花 物理化学学报, 2021, 37 (6),2009030.
doi: 10.3866/PKU.WHXB202009030 |
|
36 | Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7),2108028. |
黄悦, 梅飞飞, 张金锋, 代凯, Dawson, G. 物理化学学报, 2022, 38 (7),2108028.
doi: 10.3866/PKU.WHXB202108028 |
|
37 |
Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang, P.; Li, X. Inorg. Chem. Front. 2022, 9 (11),2479.
doi: 10.1039/d2qi00317a |
38 |
Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2),359.
doi: 10.1016/s1872-2067(21)63883-4 |
39 | Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38 (7),2111008. |
朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华 物理化学学报, 2022, 38 (7),2111008.
doi: 10.3866/PKU.WHXB202111008 |
|
40 |
Zhang, B.; Wang, D.; Jiao, S.; Xu, Z.; Liu, Y.; Zhao, C.; Pan, J.; Liu, D.; Liu, G.; Jiang, B.; et al. Chem. Eng. J. 2022, 446, 137138.
doi: 10.1016/j.cej.2022.137138 |
41 |
Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767.
doi: 10.1016/j.apsusc.2021.149767 |
42 |
Wang, J.; Li, S.; Yang, K.; Zhang, T.; Jiang, S.; Li, X.; Li, B. ACS Appl. Nano Mater. 2022, 5 (5),6736.
doi: 10.1021/acsanm.2c00760 |
43 |
Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43 (7),1657.
doi: 10.1016/S1872-2067(21)64010-X |
44 |
Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601.
doi: 10.1016/j.apsusc.2019.02.246 |
45 |
Jiang, H.; Katsumata, K.-I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B 2018, 224, 783.
doi: 10.1016/j.apcatb.2017.11.011 |
46 |
Jiang, Y.; Xia, T.; Shen, L.; Ma, J.; Ma, H.; Sun, T.; Lv, F.; Zhu, N. ACS Catal. 2021, 11 (5),2949.
doi: 10.1021/acscatal.0c04797 |
47 |
Li, L.; Zhang, R.; Vinson, J.; Shirley, E. L.; Greeley, J. P.; Guest, J. R.; Chan, M. K. Y. Chem. Mater. 2018, 30, 1912.
doi: 10.1021/acs.chemmater.7b04803 |
48 |
Liu, B.; Yao, X.; Zhang, Z.; Li, C.; Zhang, J.; Wang, P.; Zhao, J.; Guo, Y.; Sun, J.; Zhao, C. ACS Appl. Mater. Interfaces 2021, 13 (33),39165.
doi: 10.1021/acsami.1c03850 |
49 |
Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. ACS Appl. Mater. Interfaces 2018, 10 (10),8574.
doi: 10.1021/acsami.7b15418 |
50 |
Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Appl. Surf. Sci. 2020, 521, 146434.
doi: 10.1016/j.apsusc.2020.146434 |
51 |
Ponnaiah, S. K.; Prakash, P.; Arumuganathan, T.; Jeyaprabha, B. J. Photochem. Photobiol. A 2019, 380, 111860.
doi: 10.1016/j.jphotochem.2019.111860 |
52 |
Cai, J.; Xiao, Y.; Tursun, Y.; Abulizi, A. Mater. Sci. Semicond. Process. 2022, 149, 106891.
doi: 10.1016/j.mssp.2022.106891 |
53 |
Chen, D.; Yang, J.; Zhu, Y.; Zhang, Y.; Zhu, Y. Appl. Catal. B 2018, 233, 202.
doi: 10.1016/j.apcatb.2018.04.004 |
54 |
Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12 (13),2284.
doi: 10.3390/nano12132284 |
55 |
Nogueira, A. C.; Gomes, L. E.; Ferencz, J. A. P.; Rodrigues, J. E. F. S.; Gonçalves, R. V.; Wender, H. J. Phys. Chem. C 2019, 123 (42),25680.
doi: 10.1021/acs.jpcc.9b06907 |
56 |
Kramm, B.; Laufer, A.; Reppin, D.; Kronenberger, A.; Hering, P.; Polity, A.; Meyer, B. K. Appl. Phys. Lett. 2012, 100 (9),094102.
doi: 10.1063/1.3685719 |
57 |
Huang, Z.; Wu, J.; Ma, M.; Wang, J.; Wu, S.; Hu, X.; Yuan, C.; Zhou, Y. New J. Chem. 2022, 46 (35),16889.
doi: 10.1039/d2nj02725a |
58 |
Su, F.; Chen, Y.; Wang, R.; Zhang, S.; Liu, K.; Zhang, Y.; Zhao, W.; Ding, C.; Xie, H.; Ye, L. Sustainable Energy Fuels 2021, 5 (4),1034.
doi: 10.1039/d0se01561j |
59 |
Kang, S.; Li, Z.; Xu, Z.; Zhang, Z.; Sun, J.; Bian, J.; Bai, L.; Qu, Y.; Jing, L. Catal. Sci. Technol. 2022, 12 (15),4817.
doi: 10.1039/d2cy00713d |
60 |
Li, N.; Wang, B.; Si, Y.; Xue, F.; Zhou, J.; Lu, Y.; Liu, M. ACS Catal. 2019, 9 (6),5590.
doi: 10.1021/acscatal.9b00223 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[3] | Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-. |
[4] | Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209012-. |
[5] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[6] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[7] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[8] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[9] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[10] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[11] | Yaoyu Liu, Yuchen Wang, Biying Liu, Mahmoud Amer, Kai Yan. Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205028-0. |
[12] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[13] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[14] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[15] | Yutong Wan, Fan Fang, Ruixue Sun, Jie Zhang, Kun Chang. Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212042-. |
|