Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2009022.doi: 10.3866/PKU.WHXB202009022
Special Issue: Two-Dimensional Photocatalytic Materials
• REVIEW • Previous Articles Next Articles
Yan Li, Xingsheng Hu, Jingwei Huang(), Lei Wang, Houde She, Qizhao Wang()
Received:
2020-09-07
Accepted:
2020-10-22
Published:
2020-10-28
Contact:
Jingwei Huang,Qizhao Wang
E-mail:huangjingwei2009@163.com;wangqizhao@163.com; qizhaosjtu@gmail.com
About author:
Email: wangqizhao@163.com, qizhaosjtu@gmail.com Tel: +86-931-7972677 (Q.W.)Supported by:
Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation[J]. Acta Phys. -Chim. Sin. 2021, 37(8), 2009022. doi: 10.3866/PKU.WHXB202009022
"
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
WO3@a-Fe2O3/FeOOH | 0.3 to 1.12 mA·cm-2 at 1.23 V vs. RHE | 0.9 V to 0.78 V | AM 1.5G, 100 mW·cm-2 | |
V2O5/rGO/BiVO4/FeOOH/NiOOH | 0.25 to 3.06 mA·cm-2 at 1.5 V vs. Ag/AgCl | 0.5 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH NFs on Au/Fe | 1.45 to 3.1 mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.7 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH QDs/ZnO | 0.21 to 0.44 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
h-FeOOH/Fe2O3 | 0.85 to 1.31 mA·cm-2 at 1.23 V vs. RHE | 0.92 V to 0.83 V | AM 1.5G, 100 mW·cm-2 | |
3C-SiC/FeOOH | 0.52 to 0.73 mA·cm-2 at 1.23 V vs. RHE | 0.4 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
β-FeOOH/BiVO4 | 0.62 to 4.3 mA·cm-2 at 1.23 V vs. RHE | 0.8 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/BiVO4 | 1.1 to 2.3 mA·cm-2 at 1.23 V vs. RHE | 0.45 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
rGO-α-Fe2O3/β-FeOOH | 0.26 to 0.62 mA·cm-2 at 1.23 V vs. RHE | 0.88 V to 0.75 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4@Ni:FeOOH | 0.25 to 2.86 mA·cm-2 at 1.23 V vs. RHE | 0.6 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/H:BiVO4 | 0.42 to 1.66 mA·cm-2 at 1.23 V vs. RHE | 0.95 V to 0.23 V | 150 W Xe lamp, 100 mW·cm-2 | |
CuWO4/CdS/FeOOH | 0.58 to 2.05 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.25 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/NiFeOOH | 0.09 to 0.67 mA·cm-2 at 1.23 V vs. RHE | 1 V to 0.8 V | AM 1.5G, 100 mW·cm-2 | |
Ti-Fe2O3/FeOOH | nearly zero to mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.92 V | AM 1.5G, 100 mW·cm-2 | |
ZnO/TiO2/FeOOH | 0.23 to 1.59 mA·cm-2 at 1.8 V vs. RHE | 0.41 V to 0.14 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH | 0.83 to 0.91 mA·cm-2 at 1.23 V vs. RHE | 0.72 V to 0.63 V | AM 1.5G, 100 mW·cm-2 | |
WO3/FeOOH | 0.65 to 1.3 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
Co-FeOOH | 0.69 to 4.71 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
Ni-FeOOH | 0.69 to 2.55 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
WO3/porous-BiVO4/FeOOH | 1.01 to 4.4 mA·cm-2 at 1.23 V vs. RHE | 0.3 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 1.55 to 2.4 mA·cm-2 at 1.23 V vs. RHE | 0.661 V to 0.582 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/rGO/BiVO4 | 0.99 to 3.25 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 0.612 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.77 V to 0.65 V | AM 1.5G, 100 mW·cm-2 |
"
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
BiVO4/NiFe-LDH | 0.5 to 1.58 mA·cm-2 at 1.23 V vs. RHE | 0.75 V to 0.32 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/rGO/Fe2O3 | 0.45 to 0.95 mA·cm-2 at 1.23 V vs. RHE | 1.0 V to 0.85 V | AM 1.5G, 100 mW·cm-2 | |
TiO2/BiVO4/NiFe-LDH | 6.9 to 17.6 μA·cm-2 at 0.1 V vs. Ag/AgCl | 0.74 V to 0.72 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/BiVO4 | 0.79 mA to 1.93 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Ni0.5Fe0.5-LDH | 0.3 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.15 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Co0.5Fe0.5-LDH | 0.3 to 1.05 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
WO3/Fe2O3/NiFe-LDH | 1.6 to 3.0 mA·cm-2 at 1.8 V vs. RHE | 0.2 V to 0.1 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/rGO/NiFe-LDH | 1.14 to 3.26 mA·cm-2 at 1.23 V vs. RHE | similar onset potential | AM 1.5G, 100 mW·cm-2 | |
TiO2/NiFe-LDH | 0.92 to 1.18 mA·cm-2 at 1.245 V vs. RHE | -0.2 V to -0.3 V | AM 1.5G, 100 mW·cm-2 | |
Ti-TiO2-x@CoFe-LDH | 0.65 to 0.78 mA·cm-2 at 1.23 V vs. RHE | 0.23 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH/TNWs | 0.33 to 3.0 mA·cm-2 at 1.23 V vs. RHE | 0.33 V to 0.22 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH@g-C3N4 | 0.061 to 0.196 mA·cm-2 at 1.23 V vs. RHE | 0.38 V to 0.346 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/TiO2 | 0.23 to 0.41 mA·cm-2 at 1.23 V vs. RHE | 0.36 V to 0.29 V | AM 1.5G, 100 mW·cm-2 | |
a-Fe2O3/NiFe-LDH | 47 to 141 μA·cm-2 at 1.23 V vs. RHE | 0.5 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
Mn:Fe2O3/NiFe-LDH | 0.5 to 1.8 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 |
1 |
Shao Y. B. ; Zheng M. Y. ; Cai M. M. ; He L. ; Xu C. L. Electrochim. Acta 2017, 257, 1.
doi: 10.1016/j.electacta.2017.09.093 |
2 |
Wang J. Y. ; Li S. M. ; Lin R. B. ; Tu G. M. ; Wang J. ; Li Z. Q. Electrochim. Acta 2019, 301, 258.
doi: 10.1016/j.electacta.2019.01.157 |
3 | Sun S. ; Zhang X. ; Liu X. ; Pan L. ; Zhang X. ; Zou J. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905007. |
孙尚聪; 张旭雅; 刘显龙; 潘伦; 张香文; 邹吉军; 物理化学学报, 2020, 36 (3), 1905007.
doi: 10.3866/PKU.WHXB201905007 |
|
4 |
Kong D. ; Zheng Y. ; Kobielusz M. ; Wang Y. ; Bai Z. ; Macyk W. ; Wang X. ; Tang J. Mater. Today 2018, 21 (8), 897.
doi: 10.1016/j.mattod.2018.04.009 |
5 |
Osterloh F. E. Chem. Soc. Rev. 2013, 42 (6), 2294.
doi: 10.1039/C2CS35266D |
6 | Qiu W. T. ; Huang Y. C. ; Wang Z. L. ; Xiao S. ; Ji H. B. ; Tong Y. X. Acta Phys. -Chim. Sin. 2017, 33 (1), 80. |
邱伟涛; 黄勇潮; 王子龙; 肖爽; 纪红兵; 童叶翔; 物理化学学报, 2017, 33 (1), 80.
doi: 10.3866/PKU.WHXB201607293 |
|
7 |
Chen S. ; Thind S. S. ; Chen A. Electrochem. Commun. 2016, 63, 10.
doi: 10.1016/j.elecom.2015.12.003 |
8 |
Das D. V. T. N. Int. J. Hydrog. Energy 2001, 26, 13.
doi: 10.1016/S0360-3199(00)00058-6 |
9 |
She H. ; Jiang M. ; Yue P. ; Huang J. ; Wang L. ; Li J. ; Zhu G. ; Wang Q. J. Colloid Interface Sci. 2019, 549, 80.
doi: 10.1016/j.jcis.2019.04.038 |
10 |
Fujishima A. H. K. Nature 1972, 238 (5358), 37.
doi: 10.1038/238037a0 |
11 | Wang Y. Q. ; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
12 | Jiang C. X. ; Hu Y. X. ; Dong W. ; Zheng F. G. ; Su X. D. ; Fang L. ; Shen M. R. Acta Phys. -Chim. Sin. 2014, 30 (10), 1867. |
姜春香; 胡玉祥; 董雯; 郑分刚; 苏晓东; 方亮; 沈明荣; 物理化学学报, 2014, 30 (10), 1867.
doi: 10.3866/PKU.WHXB201407221 |
|
13 |
Wang Y. ; Ni Y. Y. ; Liu B. ; Shang S. X. ; Yang S. ; Cao M. H. ; Hu C. W. Electrochim. Acta 2017, 257, 356.
doi: 10.1016/j.electacta.2017.10.011 |
14 |
Zhang J. ; Zhu G. ; Liu W. ; Xi Y. ; Golosov D. A. ; Zavadski S. М. ; Melnikov S. N. J. Alloy. Compd. 2020, 834, 154992.
doi: 10.1016/j.jallcom.2020.154992 |
15 |
Li N. B. ; Wei S. T. ; Xu Y. X. ; Liu J. ; Wu J. D. ; Jia G. R. ; Cui X. Q. Electrochim. Acta 2018, 290, 364.
doi: 10.1016/j.electacta.2018.09.098 |
16 |
Liao A. Z. ; He H. C. ; Tang L. Q. ; Li Y. C. ; Zhang J. J. ; Chen J. N. ; Chen L. ; Zhang C. F. ; Zhou Y. ; Zou Z. G. ACS Appl. Mater. Interfaces 2018, 10 (12), 10141.
doi: 10.1021/acsami.8b00367 |
17 |
Hu Y. W. ; Zhu J. S. ; Yang H. ; Lyu S. S. ; Chen J. Inorg. Chem. Commun. 2020, 117
doi: 10.1016/j.inoche.2020.107971 |
18 |
Niu S. Q. ; Sun Y. C. ; Sun G. J. ; Rakov D. ; Li Y. Z. ; Ma Y. ; Chu J. Y. ; Xu P. ACS Appl. Energy Mater. 2019, 2 (5), 3927.
doi: 10.1021/acsaem.9b00785 |
19 |
Wang Y. ; Ni Y. M. ; Wang X. ; Zhang N. ; Li P. H. ; Dong J. ; Liu B. ; Liu J. H. ; Cao M. H. ; Hu C. W. ACS Appl. Energy Mater. 2018, 5725
doi: 10.1021/acsaem.8b01289 |
20 |
Chen J. D. ; Zheng F. ; Zhang S. J. ; Fisher A. ; Zhou Y. ; Wang Z. Y. ; Li Y.Y. ; Xu B. B. ; Li J. T. ; Sun S. G. ACS Catal. 2018, 8 (12), 11342.
doi: 10.1021/acscatal.8b03489 |
21 |
Chemelewski W. D. ; Lee H. C. ; Lin J. F. ; Bard A. J. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136 (7), 2843.
doi: 10.1021/ja411835a |
22 |
Lee J. M. ; Baek J. H. ; Gill T. M. ; Shi X. ; Lee S. ; Cho I. S. ; Jung H. S. ; Zheng X. J. Mater. Chem. A 2019, 7 (15), 9019.
doi: 10.1039/c9ta00205g |
23 |
Tolstoy V. P. ; Kuklo L. I. ; Gulina L. B. J. Alloy. Compd. 2019, 786, 198.
doi: 10.1016/j.jallcom.2019.01.324 |
24 |
Zhang X. F. ; Zhang B. Y. ; Liub S. S. ; Kang H. W. ; Kong W. Q. ; Zhang S. R. ; Shen Y. ; Yang B. C. Appl. Surf. Sci. 2018, 436, 974.
doi: 10.1016/j.apsusc.2017.12.078 |
25 |
Zhou S. Q. ; Chen K. Y. ; Huang J. W. ; Wang L. ; Zhang M. Y. ; Bai B. ; Wang Q. Z. Appl. Catal. B 2020, 266, 118513.
doi: 10.1016/j.apcatb.2019.118513 |
26 |
Yang X. D. ; Xu B. ; Zhang S. T. ; Zhao Z. H. ; Sun Y. Q. ; Liu G. N. ; Liu Q. S. ; Li C. C. Int. J. Hydrog. Energy 2020, 45 (16), 9546.
doi: 10.1016/j.ijhydene.2020.01.159 |
27 |
Zheng M. Y. ; Guo K. L. ; Jiang W. J. ; T T. ; Wang X. Y. ; Zhou P. P. ; Du J. ; Zhao Y. Q. ; Xua C. L. ; Hu J. S. Appl. Catal. B: Environ. 2019, 244, 1004.
doi: 10.1016/j.apcatb.2018.12.019 |
28 |
Yin J. ; Jin J. ; Lin H. ; Yin Z. ; Li J. ; Lu M. ; Guo L. ; Xi P. ; Tang Y. ; Yan C. H. Adv. Sci. 2020, 7 (10), 1903070.
doi: 10.1002/advs.201903070 |
29 |
Newman S. P. ; Jones W. New J. Chem. 1998, 22 (2), 105.
doi: 10.1039/a708319j |
30 |
Yan L. T. ; Cao L. ; Dai P. C. ; Gu X. ; Liu D. D. ; Li L. J. ; Wang Y. ; Zhao X. B. Adv. Funct. Mater. 2017, 27 (40)
doi: 10.1002/adfm.201703455 |
31 |
Zhang X. H. ; Cockreham C. B. ; Yilmaz E. ; Li G. N. ; Li N. L. ; Ha S. ; Fu L. J. ; Qi J. Q. ; Xu H. W. ; Wu D. J. Phys. Chem. Lett. 2020, 11 (9), 3745.
doi: 10.1021/acs.jpclett.0c00865 |
32 |
Fang X. Q. ; Han S. C. ; Liu D. K. ; Zhu Y. F. Chem. Phys. Lett. 2020, 746, 137282.
doi: 10.1016/j.cplett.2020.137282 |
33 |
Chen X. ; Wang H. ; Meng R. ; Xia B. ; Ma Z. ACS Appl. Energy Mater. 2020, 3 (2), 1305.
doi: 10.1021/acsaem.9b02352 |
34 |
Zhang J. ; Si C. H. ; Kou T. Y. ; Wang J. F. ; Zhang Z. H. Sustain. Energ. Fuels 2020, 4 (6), 2625.
doi: 10.1039/c9se01312a |
35 |
Hu Y. W. ; Yang H. ; Chen J. J. ; Xiong T. Z. ; Balogun M. S. J. T. ; Tong Y. X. ACS Appl. Mater. Interfaces 2019, 11 (5), 5152.
doi: 10.1021/acsami.8b20717 |
36 |
Lewis N. S. Science 2016, 351 (6271), aad1920.
doi: 10.1126/science.aad1920 |
37 |
Chen D. ; Liu Z. F. ; Zhou M. ; Wu P. D. ; Wei J. D. J. Alloy. Compd. 2018, 742, 918.
doi: 10.1016/j.jallcom.2018.01.334 |
38 |
Malathi A. ; Madhavan J. ; Ashokkumar M. ; Arunachalam P. Appl. Catal. A: Gen. 2018, 555, 47.
doi: 10.1016/j.apcata.2018.02.010 |
39 |
Ye S. ; Ding C. ; Chen R. ; Fan F. ; Fu P. ; Yin H. ; Wang X. ; Wang Z. ; Du P. ; Li C. J. Am. Chem. Soc. 2018, 140 (9), 3250.
doi: 10.1021/jacs.7b10662 |
40 |
Wang Q. ; He J. ; Shi Y. ; Zhang S. ; Niu T. ; She H. ; Bi Y. ; Lei Z. Appl. Catal. B 2017, 214, 158.
doi: 10.1016/j.apcatb.2017.05.044 |
41 |
Wu P. ; Liu Z. ; Chen D. ; Zhou M. ; Wei J. Appl. Surf. Sci. 2018, 440, 1101.
doi: 10.1016/j.apsusc.2018.01.292 |
42 |
Huang J. ; Yue P. ; Wang L. ; She H. ; Wang Q. Chin. J. Catal. 2019, 40 (10), 1408.
doi: 10.1016/s1872-2067(19)63399-1 |
43 |
Shen L. J. ; Cao Y. N. ; Du Z. J. ; Zhao W. T. ; Lin K. ; Jiang L. L. Appl. Surf. Sci. 2017, 425, 212.
doi: 10.1016/j.apsusc.2017.06.295 |
44 |
Guo Y. D. ; Li C. X. ; Gong Z. H. ; Guo Y. P. ; Wang X. G. ; Gao B. ; Qin W. J. ; Wang G. H. J. Hazard. Mater. 2020, 397, 122580.
doi: 10.1016/j.jhazmat.2020.122580 |
45 |
Fu X. H. ; Jia L. C. ; Wang A. L. ; Cao H. J. ; Ling Z. C. ; Liu C. Q. ; Shi E. ; Wu Z. C. ; Li B. ; Zhang J. Icarus 2020, 336, 113435.
doi: 10.1016/j.icarus.2019.113435 |
46 |
Fan J. Y. ; Zhao Z. W. ; Ding Z. X. ; Liu J. RSC Adv. 2018, 8 (13), 7269.
doi: 10.1039/c7ra12615h |
47 |
Fracchia M. ; Visibile A. ; Ahlberg E. ; Vertova A. ; Minguzzi A. ; Ghigna P. ; Rondinini S. ACS Appl. Energy Mater. 2018, 1 (4), 1716.
doi: 10.1021/acsaem.8b00209 |
48 |
Lima A. L. D. ; Batalha D. C. ; Fajardo H. V. ; Rodrigues J. L. ; Pereira M. C. ; Silva A. C. Catal. Today 2020, 344, 118.
doi: 10.1016/j.cattod.2018.10.035 |
49 |
Wan C. ; Jiao Y. ; Qiang T. ; Li J. Carbohydr. Polym. 2017, 156, 427.
doi: 10.1016/j.carbpol.2016.09.028 |
50 |
Hien V. X. ; Hung P. T. Mat. Sci. Semicon. Proc. 2020, 107, 104857.
doi: 10.1016/j.mssp.2019.104857 |
51 |
Sakamoto Y. ; Noda Y. ; Ohno K. ; Koike K. ; Fujii K. ; Suzuki T. M. ; Morikawa T. ; Nakamura S. Phys. Chem. Chem. Phys. 2019, 21 (34), 18486.
doi: 10.1039/c9cp00157c |
52 |
Huang Z. X. ; Han F. S. ; Li M. T. ; Zhou Z. H. ; Guan X. J. ; Guo L. J. Comp. Mater. Sci. 2019, 169, 109110.
doi: 10.1016/j.commatsci.2019.109110 |
53 |
Dutrizac J. E. ; Soriano C. Hydrometallurgy 2018, 176, 87.
doi: 10.1016/j.hydromet.2018.01.015 |
54 |
Fortunato L. F. ; Zubieta C. E. ; Fuente S. A. ; Belelli P. G. ; Ferullo R. M. Appl. Surf. Sci. 2016, 387, 894.
doi: 10.1016/j.apsusc.2016.07.011 |
55 |
Yin H. ; Wu Y. L. ; Hou J. T. ; Yan X. R. ; Li Z. H. ; Zhu C. W. ; Zhang J. ; Feng X. H. ; Tan W. F. ; Liu F. Chem. Geol. 2020, 532
doi: 10.1016/j.chemgeo.2019.119378 |
56 |
Suzuki T. M. ; Nonaka T. ; Suda A. ; Suzuki N. ; Matsuoka Y. ; Arai T. ; Sato S. ; Morikawa T. Sustain. Energ. Fuels 2017, 1 (3), 636.
doi: 10.1039/c7se00043j |
57 |
Snow C. L. ; Smith S. J. ; Lang B. E. ; Shi Q. ; Boerio-Goates J. ; Woodfield B. F. ; Navrotsky A. J. Chem. Thermodyn. 2011, 43 (2), 190.
doi: 10.1016/j.jct.2010.08.022 |
58 |
Li Z. Y. ; Liu G. G. ; Su Q. ; Jin X. Y. ; Wen X. Q. ; Zhang G. J. ; Huang R. Arab. J. Chem. 2018, 11 (6), 910.
doi: 10.1016/j.arabjc.2018.02.005 |
59 |
Yang L. S. ; Liu Y. ; Li J. B. ; Du G. P. J. Alloy. Compd. 2018, 763, 134.
doi: 10.1016/j.jallcom.2018.05.305 |
60 |
Wang Y. C. ; Gu Y. ; Li H. M. ; Ye M. X. ; Qin W. X. ; Zhang H. M. ; Wang G. Z. ; Zhang Y. X. ; Zhao H. J. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123773 |
61 |
Ma P. ; Luo S. ; Luo Y. ; Huang X. ; Yang M. ; Zhao Z. ; Yuan F. ; Chen M. ; Ma J. J. Colloid Interface Sci. 2020, 574, 241.
doi: 10.1016/j.jcis.2020.04.058 |
62 |
Chowdhury D. R. ; Spiccia L. ; Amritphale S. S. ; Paul A. ; Singh A. J. Mater. Chem. A 2016, 4 (10), 3655.
doi: 10.1039/c6ta00313c |
63 |
Lee J. ; Lee H. ; Lim B. J. Ind. Eng. Chem. 2018, 58, 100.
doi: 10.1016/j.jiec.2017.09.013 |
64 |
Yaw C. S. ; Tang J. ; Soh A. K. ; Chong M. N. Chem. Eng. J. 2020, 380
doi: 10.1016/j.cej.2019.122501 |
65 |
Wang L. ; Nguyen N. T. ; Zhang Y. ; Bi Y. ; Schmuki P. ChemSusChem 2017, 10 (13), 2720.
doi: 10.1002/cssc.201700522 |
66 |
Kanan M. W. ; Nocera D. G. Science 2008, 321 (5892), 1072.
doi: 10.1126/science.1162018 |
67 |
Shi X. J. ; Zhang K. ; Park J. H. Int. J. Hydrog. Energy 2013, 38 (29), 12725.
doi: 10.1016/j.ijhydene.2013.07.057 |
68 |
Ponomarev E. A. ; Peter L. M. J. Electroanal. Chem. 1995, 396 (1-2), 219.
doi: 10.1016/0022-0728(95)04115-5 |
69 |
Zhan F. Q. ; Yang Y. H. ; Liu W. H. ; Wang K. K. ; Li W. Z. ; Li J. ACS Sustain. Chem. Eng. 2018, 6 (6), 7789.
doi: 10.1021/acssuschemeng.8b00776 |
70 |
Xiao J. R. ; Fan L. L. ; Huang Z. L. ; Zhong J. ; Zhao F. G. ; Xu K. J. ; Zhou S. F. ; Zhan G. W. Chin. J. Catal. 2020, 41 (11), 1761.
doi: 10.1016/s1872-2067(20)63618-x |
71 |
Jian J. X. ; Shi Y. C. ; Syväjärvi M. ; Yakimova R. ; Sun J. W. Sol. RRL 2019, 4 (1), 1900364.
doi: 10.1002/solr.201900364 |
72 |
Zhang B. ; Wang L. ; Zhang Y. ; Ding Y. ; Bi Y. Angew. Chem. Int. Ed. 2018, 57 (8), 2248.
doi: 10.1002/anie.201712499 |
73 |
She H.D. ; Yue P. F. ; Huang J. W. ; Wang L. ; Wang Q. Z. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123703 |
74 |
Wang L. ; Yang Y. ; Zhang Y. J. ; Rui Q. ; Zhang B. B. ; Shen Z. Q. ; Bi Y. P. J. Mater. Chem. A 2017, 5 (32), 17056.
doi: 10.1039/c7ta05318e |
75 |
Bazri B. ; Kowsari E. ; Seifvand N. ; Naseri N. J. Electroanal. Chem. 2019, 843, 1.
doi: 10.1016/j.jelechem.2019.04.069 |
76 |
Zhang X. F. ; Li H. ; Kong W. Q. ; Liu H. L. ; Fan H. B. ; Wang M. K. Electrochim. Acta 2019, 300, 77.
doi: 10.1016/j.electacta.2019.01.073 |
77 |
Singh A. P. ; Saini N. ; Mehta B. R. ; Hellman A. ; Iandolo B. ; Wickman B. Catal. Today 2019, 321-322, 87.
doi: 10.1016/j.cattod.2018.03.041 |
78 |
Zhou M. ; Liu Z. H. ; Li X. F. ; Liu Z. F. Ind. Eng. Chem. Res. 2018, 57 (18), 6210.
doi: 10.1021/acs.iecr.8b00358 |
79 |
Chen D. ; Liu Z. ; Zhang S. Appl. Catal. B: Environ. 2020, 265
doi: 10.1016/j.apcatb.2019.118580 |
80 |
Abel A. J. ; Patel A. M. ; Smolin S. Y. ; Opasanont B. ; Baxter J. B. J. Mater. Chem. A 2016, 4 (17), 6495.
doi: 10.1039/c6ta01862a |
81 |
Li Z. H. ; Feng S. L. ; Liu S. Y. ; Li X. ; Wang L. ; Lu W. Q. Nanoscale 2015, 7 (45), 19178.
doi: 10.1039/c5nr06212h |
82 |
Deng J. J. ; Zhang Q. Z. ; Feng K. ; Lan H. W. ; Zhong J. ; Chaker M. ; Ma D. ChemSusChem 2018, 11 (21), 3783.
doi: 10.1002/cssc.201801751 |
83 |
Huang J. W. ; Ding Y. ; Luo X. ; Feng Y. Y. J. Catal. 2016, 333, 200.
doi: 10.1016/j.jcat.2015.11.003 |
84 |
Yan J. Q. ; Li P. ; Ji Y. J. ; Bian H. ; Li Y. Y. ; Liu S. Z. J. Catal. 2017, 5 (40), 21478.
doi: 10.1039/c7ta07208b |
85 |
Ma Z. Z. ; Hou H. L. ; Song K. ; Fang Z. ; Wang L. ; Gao F. M. ; Yang Z. B. ; Tang B. ; Yang W. Y. ChemElectroChem 2018, 5 (23), 3660.
doi: 10.1002/celc.201801233 |
86 |
Shi Q. ; Liu Q. ; Ma Y. ; Fang Z. ; Liang Z. ; Shao G. ; Tang B. ; Yang W. ; Qin L. ; Fang X. Adv. Energy Mater. 2020, 10 (10)
doi: 10.1002/aenm.201903854 |
87 |
Zeng G. H. ; Hou L. Q. ; Zhang J. ; Zhu J. Q. ; Yu X. ; Fu X. H. ; Zhu Y. ; Zhang Y. M. ChemCatChem 2020, 12, 3769.
doi: 10.1002/cctc.202000382 |
88 |
Kim J. Y. ; Youn D. H. ; Kang K. ; Lee J. S. Angew. Chem. Int. Ed. 2016, 55 (36), 10854.
doi: 10.1002/anie.201605924 |
89 |
Rosenberg S. P. ; Armstrong L. Light Metals 2016, 1, 235.
doi: 10.1007/978-3-319-48176-0_31 |
90 |
She H. D. ; Yue P. F. ; Ma X. Y. ; Huang J. W. ; Wang L. ; Wang Q. Z. Appl. Catal. B. 2020, 263, 118280.
doi: 10.1016/j.apcatb.2019.118280 |
91 |
Reichle W. T. Solid State Ion 1986, 22 (1), 135.
doi: 10.1016/0167-2738(86)90067-6 |
92 |
Vanderlaan R. K. ; White J. L. ; Hem S. L. J. Pharm. Sci. 1982, 71 (7), 780.
doi: 10.1002/jps.2600710715 |
93 |
Allmann R. J. H. P. Neues Jahrb. Miner. Monatsh. 1969, 12, 544.
doi: 10.1016/0927-7757(96)03542-X |
94 |
Taylor H. F. W. Mineral. Mag. 1969, 37, 338.
doi: 10.1107/S0567740870002443 |
95 |
Pachayappan L. ; Nagendran S. ; Kamath P. V. Cryst. Growth Des. 2017, 17 (5), 2536.
doi: 10.1021/acs.cgd.7b00071 |
96 |
Dewangan N. ; Hui W. M. ; Jayaprakash S. ; Bawah A.-R. ; Poerjoto A. J. ; Jie T. ; Jangam A. ; Hidajat K. ; Kawi S. Catal. Today 2020, 356, 490.
doi: 10.1016/j.cattod.2020.06.020 |
97 |
Guo J. ; Yang X. ; Bai S. ; Xiang X. ; Luo R. ; He J. ; Chen A. J. Colloid Interface Sci. 2019, 540, 9.
doi: 10.1016/j.jcis.2018.12.069 |
98 |
Fan G. ; Li F. ; Evans D. G. ; Duan X. Chem. Soc. Rev. 2014, 43 (20), 7040.
doi: 10.1039/c4cs00160e |
99 |
Gao R. ; Yan D. Adv. Energy Mater. 2019, 10 (11)
doi: 10.1002/aenm.201900954 |
100 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112 (7), 4124.
doi: 10.1021/cr200434v |
101 |
Zhou W. ; Jiang T. ; Zhao Y. ; Xu C. ; Pei C. ; Xue H. J. Colloid Interface Sci. 2019, 549, 42.
doi: 10.1016/j.jcis.2019.04.026 |
102 |
Youn D. H. ; Park Y. B. ; Kim J. Y. ; Magesh G. ; Jang Y. J. ; Lee J. S. J. Power Sources 2015, 294, 437.
doi: 10.1016/j.jpowsour.2015.06.098 |
103 |
Wang Q. ; Niu T. ; Wang L. ; Huang J. ; She H. Chin. J. Catal. 2018, 39 (4), 613.
doi: 10.1016/s1872-2067(17)62987-5 |
104 |
Lv X. W. ; Xiao X. ; Cao M. L. ; Bu Y. ; Wang C. Q. ; Wang M. K. ; Shen Y. Appl. Surf. Sci. 2018, 439, 1065.
doi: 10.1016/j.apsusc.2017.12.182 |
105 |
Zhu Y. ; Ren J. ; Yang X. ; Chang G. ; Bu Y. ; Wei G. ; Han W. ; Yang D. J. Mater. Chem. A 2017, 5 (20), 9952.
doi: 10.1039/c7ta02179h |
106 |
Bai S. ; Yang X. ; Liu C. ; Xiang X. ; Luo R. ; He J. ; Chen A. ACS Sustain. Chem. Eng. 2018, 6 (10), 12906.
doi: 10.1021/acssuschemeng.8b02267 |
107 |
Chen H. ; Wang S. ; Wu J. ; Zhang X. ; Zhang J. ; Lyu M. ; Luo B. ; Qian G. ; Wang L. J. Mater. Chem. A 2020, 8 (26), 13231.
doi: 10.1039/d0ta04572a |
108 |
Ning F. ; Shao M. ; Xu S. ; Fu Y. ; Zhang R. ; Wei M. ; Evans D. G. ; Duan X. Energy Environ. Sci. 2016, 9 (8), 2633.
doi: 10.1039/c6ee01092j |
109 |
Guo J. ; Mao C. Y. ; Zhang R. K. ; Shao M. F. ; Wei M. ; Feng P. Y. J. Mater. Chem. A 2017, 5 (22), 11016.
doi: 10.1039/c7ta00770a |
110 |
Sayed R. A. ; Abd El Hafiz S. E. ; Gamal N. ; GadelHak Y. ; El Rouby W. M. A. J. Alloy. Compd. 2017, 728, 1171.
doi: 10.1016/j.jallcom.2017.09.083 |
111 |
Arif M. ; Yasin G. ; Shakeel M. ; Mushtaq M. A. ; Ye W. ; Fang X. ; Ji S. ; Yan D. Mater. Chem. Front. 2019, 3 (3), 520.
doi: 10.1039/c8qm00677f |
112 |
Cui W. C. ; Bai H. Y. ; Shang J. P. ; Wang F. G. ; Xu D. B. ; Ding J. R. ; Fan W. Q. ; Shi W. D. Electrochim. Acta 2020, 349, 136383.
doi: 10.1016/j.electacta.2020.136383 |
113 |
Zhu Y. ; Zhao X. ; Li J. ; Zhang H. ; Chen S. ; Han W. ; Yang D. J. Alloy. Compd. 2018, 764, 341.
doi: 10.1016/j.jallcom.2018.06.064 |
114 |
Huang J. W. ; Hu G. W. ; Ding Y. ; Pang M. C. ; Ma B. C. J. Catal. 2016, 340, 261.
doi: 10.1016/j.jcat.2016.05.007 |
115 |
AlSalka Y. ; Granone L. I. ; Ramadan W. ; Hakki A. ; Dillert R. ; Bahnemann D. W. Appl. Catal. B: Environ. 2019, 244, 1065.
doi: 10.1016/j.apcatb.2018.12.014 |
116 |
Singh D. ; Tabari T. ; Ebadi M. ; Trochowski M. ; Baris Yagci M. ; Macyk W. Appl. Surf. Sci. 2019, 471, 1017.
doi: 10.1016/j.apsusc.2018.12.082 |
117 |
Lam S. M. ; Sin J. C. ; Mohamed A. R. Mater. Res. Bull. 2017, 90, 15.
doi: 10.1016/j.materresbull.2016.12.052 |
118 |
McDonnell K. A. ; Wadnerkar N. ; English N. J. ; Rahman M. ; Dowling D. Chem. Phys. Lett. 2013, 572, 78.
doi: 10.1016/j.cplett.2013.04.024 |
119 |
Chen G. ; Zhu Y. ; Chen H. M. ; Hu Z. ; Hung S. F. ; Ma N. ; Dai J. ; Lin H. J. ; Chen C. T. ; Zhou W. ; et al Adv Mater. 2019, 31 (28), 1900883.
doi: 10.1002/adma.201900883 |
120 |
Wang W. ; Xu M. G. ; Xu X. M. ; Zhou W. ; Shao Z. P. Angew. Chem. Int. Ed. 2020, 59 (1), 136.
doi: 10.1002/anie.201900292 |
121 |
Huang Y. ; Liu J. ; Deng Y. ; Qian Y. ; Jia X. ; Ma M. ; Yang C. ; Liu K. ; Wang Z. ; Qu S. ; et al J. Semicond. 2020, 41 (1), 011701.
doi: 10.1088/1674-4926/41/1/011701 |
122 |
Han B. ; Grimaud A. ; Giordano L. ; Hong W. T. ; Diaz-Morales O. ; Yueh-Lin L. ; Hwang J. ; Charles N. ; Stoerzinger K. A. ; Yang W. ; et al J. Phys. Chem. C 2018, 122 (15), 8445.
doi: 10.1021/acs.jpcc.8b01397 |
123 |
Wang Z. ; Tan S. P. ; Xiong Y. P. ; Wei J. H. Prog. Nat. Sci. Mater. 2018, 28 (4), 399.
doi: 10.1016/j.pnsc.2018.03.002 |
124 |
Khan R. ; Mehran M. T. ; Naqvi S. R. ; Khoja A. H. ; Mahmood K. ; Shahzad F. ; Hussain S. Int. J. Energy Res. 2020, 44 (12), 9714.
doi: 10.1002/er.5635 |
125 |
Hu C. ; Bai Y. ; Xiao S. ; Zhang T. ; Meng X. ; Ng W. K. ; Yang Y. ; Wong K. S. ; Chen H. ; Yang S. J. Mater. Chem. A 2017, 5 (41), 21858.
doi: 10.1039/C7TA07139F |
126 |
Wu X. ; Li H. ; Wang X. ; Jiang L. ; Xi J. ; Du G. ; Ji Z. J. Alloy. Compd. 2019, 783, 643.
doi: 10.1016/j.jallcom.2018.12.345 |
127 |
Xie J. L. ; Guo C. X. ; Yang P. P. ; Wang X. D. ; Liu D. Y. ; Li C. M. Nano Energy 2017, 31, 28.
doi: 10.1016/j.nanoen.2016.10.048 |
128 |
Khoomortezaei S. ; Abdizadeh H. ; Golobostanfard M. R. ACS Appl. Energy Mater. 2019, 2 (9), 6439.
doi: 10.1021/acsaem.9b01041 |
[1] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[2] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[3] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[4] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[5] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[6] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[7] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
[8] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[9] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[10] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
[11] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-. |
[12] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[13] | Chufeng ZHANG,Zhewei CHEN,Yuebin LIAN,Yujie CHEN,Qin LI,Yindong GU,Yongtao LU,Zhao DENG,Yang PENG. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1404-1411. |
[14] | Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087. |
[15] | Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404. |
|