Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (6): 2011022.doi: 10.3866/PKU.WHXB202011022
Special Issue: Design and Fabrication of Advanced Photocatalyst
• ARTICLE • Previous Articles Next Articles
Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu()
Received:
2020-11-06
Accepted:
2020-11-26
Published:
2020-12-02
Contact:
Difa Xu
E-mail:xudifa@sina.com
About author:
Difa Xu, Email: xudifa@sina.com; Tel.: +86-13687382717Supported by:
Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin. 2021, 37(6), 2011022. doi: 10.3866/PKU.WHXB202011022
1 |
Khin M. M. ; Nair A. S. ; Babu V. J. ; Murugan R. ; Ramakrishna S. Energ. Environ. Sci. 2012, 5, 8075.
doi: 10.1039/c2ee21818f |
2 |
Brillas E. ; Martínez-Huitle C. A. Appl. Catal. B 2015, 166–167, 603.
doi: 10.1016/j.apcatb.2014.11.016 |
3 |
Ibrahim R. K. ; Hayyan M. ; Alsaadi M. A. ; Hayyan A. ; Ibrahim S. Environ. Sci. Pollut. Res. Int. 2016, 23, 13754.
doi: 10.1007/s11356-016-6457-z |
4 |
Reddy P. A. K. ; Reddy P. V. L. ; Kwon E. ; Kim K. ; Akter T. ; Kalagara S. Environ. Int. 2016, 91, 94.
doi: 10.1016/j.envint.2016.02.012 |
5 |
Wang J. ; Wang S. J. Environ. Manage. 2016, 182, 620.
doi: 10.1016/j.jenvman.2016.07.049 |
6 | Wang Y. ; Zhang S. ; Ge Y. ; Wang C. ; Hu J. ; Liu H. Acta Phys. -Chim. Sin. 2020, 36, 1905083. |
王艺蒙; 张申平; 葛宇; 王臣辉; 胡军; 刘洪来; 物理化学学报, 2020, 36, 1905083.
doi: 10.3866/PKU.WHXB201905083 |
|
7 |
Wang S. ; Yun J. ; Luo B. ; Butburee T. ; Peerakiatkhajohn P. ; Thaweesak S. ; Xiao M. ; Wang L. J. Mater. Sci. Technol. 2017, 33, 1.
doi: 10.1016/j.jmst.2016.11.017 |
8 |
He R. ; Xu D. ; Cheng B. ; Yu J. ; Ho W. Nanoscale Horiz. 2018, 3, 464.
doi: 10.1039/c8nh00062j |
9 |
He R. ; Cao S. ; Zhou P. ; Yu J. Chin. J. Catal. 2014, 35, 989.
doi: 10.1016/S1872-2067(14)60075-9 |
10 |
Xiang X. ; Zhu B. ; Cheng B. ; Yu J. ; Lv H. Small 2020, 16, 2001024.
doi: 10.1002/smll.202001024 |
11 |
Liu X. ; Gu S. ; Zhao Y. ; Zhou G. ; Li W. J. Mater. Sci. Technol. 2020, 56, 45.
doi: 10.1016/j.jmst.2020.04.023 |
12 |
Yang Y. ; Zhang C. ; Lai C. ; Zeng G. ; Huang D. ; Cheng M. ; Wang J. ; Chen F. ; Zhou C. ; Xiong W. Adv. Colloid Interface Sci. 2018, 254, 76.
doi: 10.1016/j.cis.2018.03.004 |
13 |
He R. ; Zhang J. ; Yu J. ; Cao S. J. Colloid Interface Sci. 2016, 478, 201.
doi: 10.1016/j.jcis.2016.06.012 |
14 |
Di J. ; Xia J. ; Li H. ; Guo S. ; Dai S. Nano Energy 2017, 41, 172.
doi: 10.1016/j.nanoen.2017.09.008 |
15 |
Cheng H. ; Huang B. ; Dai Y. Nanoscale 2014, 6, 2009.
doi: 10.1039/c3nr05529a |
16 |
Anwer H. ; Mahmood A. ; Lee J. ; Kim K. ; Park J. ; Yip A. C. K. Nano Res. 2019, 12, 955.
doi: 10.1007/s12274-019-2287-0 |
17 |
Sharma K. ; Dutta V. ; Sharma S. ; Raizada P. ; Hosseini-Bandegharaei A. ; Thakur P. ; Singh P. J. Ind. Eng. Chem. 2019, 78, 1.
doi: 10.1016/j.jiec.2019.06.022 |
18 |
Xing Z. ; Zhang J. ; Cui J. ; Yin J. ; Zhao T. ; Kuang J. ; Xiu Z. ; Wan N. ; Zhou W. Appl. Catal. B 2018, 225, 452.
doi: 10.1016/j.apcatb.2017.12.005 |
19 |
Komeily-Nia Z. ; Montazer M. ; Heidarian P. ; Nasri-Nasrabadi B. Polym. Adv. Technol. 2019, 30, 235.
doi: 10.1002/pat.4480 |
20 |
Liao C. ; Ma Z. ; Dong G. ; Qiu J. J. Am. Ceram. Soc. 2015, 98, 957.
doi: 10.1111/jace.13388 |
21 |
He R. ; Lou Z. ; Gui J. ; Tang B. ; Xu D. Appl. Surf. Sci. 2020, 504, 144370.
doi: 10.1016/j.apsusc.2019.144370 |
22 |
Zhang Q. ; Bai J. ; Li G. ; Li C. J. Solid State Chem. 2019, 270, 129.
doi: 10.1016/j.jssc.2018.11.015 |
23 |
Li H. ; Su Z. ; Hu S. ; Yan Y. Appl. Catal. B 2017, 207, 134.
doi: 10.1016/j.apcatb.2017.02.013 |
24 |
Fu J. ; Zhu B. ; You W. ; Jaroniec M. ; Yu J. Appl. Catal. B 2018, 220, 148.
doi: 10.1016/j.apcatb.2017.08.034 |
25 |
Karim S. A. ; Mohamed A. ; Abdel-Mottaleb M. M. ; Osman T. A. ; Khattab A. J. Alloy. Compd. 2019, 772, 650.
doi: 10.1016/j.jallcom.2018.09.155 |
26 |
Mohamed A. ; Nasser W. S. ; Kamel B. M. ; Hashem T. Eur. Polym. J. 2019, 113, 192.
doi: 10.1016/j.eurpolymj.2019.01.062 |
27 |
Prasanth R. ; Aravindan V. ; Srinivasan M. J. Power Sources 2012, 202, 299.
doi: 10.1016/j.jpowsour.2011.11.057 |
28 |
Wang K. ; Shao C. ; Li X. ; Miao F. ; Lu N. ; Liu Y. J. Sol-Gel Sci. Technol. 2016, 80, 783.
doi: 10.1007/s10971-016-4161-6 |
29 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11, 4613.
doi: 10.1038/s41467-020-18350-7 |
30 |
He R. ; Cheng K. ; Wei Z. ; Zhang S. ; Xu D. Appl. Surf. Sci. 2019, 465, 964.
doi: 10.1016/j.apsusc.2018.09.217 |
31 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
32 |
Xie Q. ; He W. ; Liu S. ; Li C. ; Zhang J. ; Wong P. K. Chin. J. Catal. 2020, 41, 140.
doi: 10.1016/S1872-2067(19)63481-9 |
33 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/S1872-2067(19)63382-6 |
34 |
Li X. ; Xiong J. ; Gao X. ; Ma J. ; Chen Z. ; Kang B. ; Liu J. ; Li H. ; Feng Z. ; Huang J. J. Hazard. Mater. 2020, 387, 121690.
doi: 10.1016/j.jhazmat.2019.121690 |
35 |
Wang J. ; Zhang Q. ; Deng F. ; Luo X. ; Dionysiou D. D. Chem. Eng. J. 2020, 379, 122264.
doi: 10.1016/j.cej.2019.122264 |
36 |
He R. ; Liu H. ; Liu H. ; Xu D. ; Zhang L. J. Mater. Sci. Technol. 2020, 52, 145.
doi: 10.1016/j.jmst.2020.03.027 |
37 |
Li Z. ; Wu Z. ; He R. ; Wan L. ; Zhang S. J. Mater. Sci. Technol. 2020, 56, 151.
doi: 10.1016/j.jmst.2020.02.061 |
38 |
Xia P. ; Cao S. ; Zhu B. ; Liu M. ; Shi M. ; Yu J. ; Zhang Y. Angew. Chem. Int. Ed. 2020, 59, 5218.
doi: 10.1002/anie.201916012 |
39 |
He F. ; Zhu B. ; Cheng B. ; Yu J. ; Ho W. ; Macyk W. Appl. Catal. B 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
40 |
Wang Z. ; Chen Y. ; Zhang L. ; Cheng B. ; Yu J. ; Fan J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
41 |
Ge H. ; Xu F. ; Cheng B. ; Yu J. ; Ho W. ChemCatChem 2019, 11, 6301.
doi: 10.1002/cctc.201901486 |
42 |
Yan Y. ; Gong J. ; Chen J. ; Zeng Z. ; Huang W. ; Pu K. ; Liu J. ; Chen P. Adv. Mater. 2019, 31, 1808283.
doi: 10.1002/adma.201808283 |
43 |
Yeh T. ; Chen S. ; Teng H. Nano Energy 2015, 12, 476.
doi: 10.1016/j.nanoen.2015.01.021 |
44 |
Roushani M. ; Mavaei M. ; Daneshfar A. ; Rajabi H. R. J. Mater. Sci.: Mater. Electron. 2017, 28, 5135.
doi: 10.1007/s10854-016-6169-7 |
45 |
Ye R. ; Peng Z. ; Metzger A. ; Lin J. ; Mann J. A. ; Huang K. ; Xiang C. ; Fan X. ; Samuel E. L. G. ; Alemany L. B. ; et al ACS Appl. Mater. Interface. 2015, 7, 7041.
doi: 10.1021/acsami.5b01419 |
46 |
Yan M. ; Hua Y. ; Zhu F. ; Gu W. ; Jiang J. ; Shen H. ; Shi W. Appl. Catal. B 2017, 202, 518.
doi: 10.1016/j.apcatb.2016.09.039 |
47 |
Yuan A. ; Lei H. ; Xi F. ; Liu J. ; Qin L. ; Chen Z. ; Dong X. J. Colloid Interface Sci. 2019, 548, 56.
doi: 10.1016/j.jcis.2019.04.027 |
48 |
Yan Y. ; Chen J. ; Li N. ; Tian J. ; Li K. ; Jiang J. ; Liu J. ; Tian Q. ; Chen P. ACS Nano 2018, 12, 3523.
doi: 10.1021/acsnano.8b00498 |
49 | Hu C. ; Mu Y. ; Li M. ; Qiu J. Acta Phys. -Chim. Sin. 2019, 35, 572. |
胡超; 穆野; 李明宇; 邱介山; 物理化学学报, 2019, 35, 572.
doi: 10.3866/PKU.WHXB201806060 |
|
50 |
Peng J. ; Gao W. ; Gupta B. K. ; Liu Z. ; Romero-Aburto R. ; Ge L. ; Song L. ; Alemany L. B. ; Zhan X. ; Gao G. ; et al Nano Lett. 2012, 12, 844.
doi: 10.1021/nl2038979 |
51 |
Zhou Q. ; Song Y. ; Li N. ; Chen D. ; Xu Q. ; Li H. ; He J. ; Lu J. ACS Sustain. Chem. Eng. 2020, 8, 7921.
doi: 10.1021/acssuschemeng.0c01548 |
52 |
Sun X. ; Li H. ; Ou N. ; Lyu B. ; Gui B. ; Tian S. ; Qian D. ; Wang X. ; Yang J. Molecules 2019, 24, 344.
doi: 10.3390/molecules24020344 |
53 |
Zhu S. ; Zhao X. ; Song Y. ; Lu S. ; Yang B. Nano Today 2016, 11, 128.
doi: 10.1016/j.nantod.2015.09.002 |
54 |
Sharma S. ; Dutta V. ; Singh P. ; Raizada P. ; Rahmani-Sani A. ; Hosseini-Bandegharaei A. ; Thakur V. K. J. Clean. Prod. 2019, 228, 755.
doi: 10.1016/j.jclepro.2019.04.292 |
55 |
Dong Y. ; Shao J. ; Chen C. ; Li H. ; Wang R. ; Chi Y. ; Lin X. ; Chen G. Carbon 2012, 50, 4738.
doi: 10.1016/j.carbon.2012.06.002 |
56 |
Babu V. J. ; Bhavatharini R. S. R. ; Ramakrishna S. RSC Adv. 2014, 4, 19251.
doi: 10.1039/C4RA00579A |
57 |
Zhou X. ; Shao C. ; Yang S. ; Li X. ; Guo X. ; Wang X. ; Li X. ; Liu Y. ACS Sustain. Chem. Eng. 2018, 6, 2316.
doi: 10.1021/acssuschemeng.7b03760 |
58 |
Zhang Y. ; Park M. ; Kim H. Y. ; Ding B. ; Park S. Appl. Surf. Sci. 2016, 384, 192.
doi: 10.1016/j.apsusc.2016.05.039 |
59 |
Li S. ; Zhou S. ; Xu H. ; Xiao L. ; Wang Y. ; Shen H. ; Wang H. ; Yuan Q. J. Mater. Sci. 2016, 51, 6801.
doi: 10.1007/s10853-016-9967-7 |
[1] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[2] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[3] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[4] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[5] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[6] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[7] | Yi Zhou, Weilong Ouyang, Yuejun Wang, Haiqiang Wang, Zhongbiao Wu. Core-Shell Structured NH2-UiO-66@TiO2 Photocatalyst for the Degradation of Toluene under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009045-. |
[8] | Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009102-. |
[9] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[10] | Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008030-. |
[11] | Jiabi Li, Xi Wu, Shengwei Liu. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009038-. |
[12] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[13] | Yuhong Li,Xin-Ping Wu,Cong Liu,Meng Wang,Benteng Song,Guiyun Yu,Gang Yang,Wenhua Hou,Xue-Qing Gong,Luming Peng. NMR and EPR Studies of Partially Reduced TiO2 [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905021-. |
[14] | Xiaowei Li,Bin Wang,Wenxuan Yin,Jun Di,Jiexiang Xia,Wenshuai Zhu,Huaming Li. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1902001-. |
[15] | Yuelu ZHU,Xinyang ZHAO,Qian WU,Ying CHEN,Jing ZHAO. Research Advances in C―H Bond Activation of Multitasking N-Phenoxyamides [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 989-1004. |
|