Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2101020.doi: 10.3866/PKU.WHXB202101020
Special Issue: Graphene: Functions and Applications
• PERSPECTIVE • Previous Articles Next Articles
Qing Chen1,2,3, Jian Zhao1, Huhu Cheng2,3,*(), Liangti Qu2,3,*()
Received:
2021-01-11
Accepted:
2021-03-09
Published:
2021-03-12
Contact:
Huhu Cheng,Liangti Qu
E-mail:huhucheng@tsinghua.edu.cn;lqu@mail.tsingua.edu.cn
About author:
Liangti Qu, Email: lqu@mail.tsingua.edu.cnSupported by:
Qing Chen, Jian Zhao, Huhu Cheng, Liangti Qu. Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2101020. doi: 10.3866/PKU.WHXB202101020
Fig 1
Different preparation methods of graphene 3D structure materials. (a) Photograph of a piece of 3DG was prepared by self-assembly method standing on a dandelion, Adapted with permission from Ref. 42. Copyright 2012, Wiley-VCH; (b) Cartoonic presentation of 3DG preparation with Template method, Adapted with permission from Ref. 52. Copyright 2014, The Royal Society of Chemistry; (c) Schematic illustration of 3DG formation with CVD method. Adapted with permission from Ref. 56, Copyright 2016, American Chemical Society; (d) Schematic illustration of 3D-print, Adapted with permission from Ref. 64, Copyright 2015, Nature Publishing Group; (e) Photographs of a large-size and structure-intact GAB with an area of about 1 m2; Adapted with permission from Ref. 76, Copyright 2017, American Chemical Society; (f) Schemes of the 3D graphene preparation process on active metal substrate and on the arbitrary conductive target supported by active metal. Adapted with permission from Ref. 44. Copyright 2013, Nature Publishing Group."
Fig 2
Application of different graphene 3D structure materials in photothermal conversion. (a) and (b) Pure graphene and it's evaporation rate, Adapted with permission from Ref. 83, Copy right 2018, Elsevier Ltd.; (c) and (d) Graphene-MoS22 composite and its evaporation rate; Adapted with permission from Ref. 90, Copyright 2019, The Royal Society of Chemistry; (e) and (f) Garphene-PVA composite and its evaporation rate; Adapted with permission from Ref. 92, Copyright 2018, The Royal Society of Chemistry; (g) Schematic illustration depicting the fabrication of wood-GO composite and setup for solar steam generation using the bilayered composite structure; Adapted with permission from Ref. 100, Copyright 2017, American Chemical Society; (h) and (I) Schematic diagrams of RGO-silk-fabric as a light-absorbing material for generating steam; Instantaneous water evaporation rates of the four different systems. Adapted with permission from Ref. 102, Copyright 2018, The Royal Society of Chemistry."
Fig 3
3D-graphene photo-thermal water treatment. (a) Scheme of the lab made solar still. (b)The concentrations of five primary ions in seawater sample before (original) and after solar thermal purification. (c, d) The concentrations of ions in the actual lake water before (original) and after purification. (e, f) The photographs of agar plates inoculated with actual seawater (East Sea) before (original) and after purification under solar illumination of 1sun, respectively. (g, h) The photographs of agar plates inoculated with lake water from Beijing before (original) and after purification under solar illumination of 1 sun, respectively, Adapted with permission from Ref. 83, Copyright 2018, Elsevier Ltd.; (i)The mass change t in rGO foam and pure water under solar illumination of 1 sun. Adapted with permission from Ref. 82, Copyright 2019, Wiley-VCH; (j) Sewage treatment performance by 3DG under solar illumination. The contaminated water has a strong absorption peak around 465 or 663 nm due to the methylorange (MO) or methyleneblue (MB) absorption, respectively. After the solar treatment, the water contained no MO or MB, as evidenced by the near zero optical absorbance, showing an excellent sewage treatment performance. Adapted with permission from Ref. 80. Copyright 2018, American Chemical Society."
Table 1
Summary of the performance of 3DG for water evaporation in recent year."
Number | Composition | Evaporation rate/(kg·m−2·h−1) | Preparation method | Ref. |
1 | 3D graphene | 1.78 | Freeze-Drying Route | |
2 | Graphene Foam | 2.4 | Freeze-Drying Route | |
3 | Porous graphene sponges | 2.01–2.61 | Freeze-Drying Route | |
4 | Hierarchical Graphene Foam | 1.4 | CVD | |
5 | N-doped graphene | 1.5 | CVD | |
6 | 3D Honeycomb Graphene | 2.6 | Self-Assemble | |
7 | Vertically Aligned Graphene Sheets | 1.62 | Freeze-Drying Route | |
8 | Vertically ordered pillar array of graphene framework | 2.1 | Freeze-Drying Route | |
9 | MoS2@graphene | 0.9 | Self-Assemble | |
10 | MnO2@graphene | 1.78 | Freeze-Drying Route | |
11 | polyacrylonitrile@graphene | 1.47 | Freeze-Drying Route | |
12 | PVA@graphene | 2.5 | Freeze-Drying Route | |
13 | Melamine foam@Reduced grapheneoxide | 1.476 | Self-Assemble | |
14 | RGO@multiwalled carbon nanotubes@sodium alginate | 1.622 | Freeze-Drying Route | |
15 | Wood@graphene | 1.6 ± 0.02 | Laser Reduction | |
16 | N-doped graphene@carbon hybrid aerogels | 1.558 | Template Method | |
17 | Melamine@graphene | 1.476 | Self-Assemble | |
18 | Polyethylenimine@rGO | 0.838 | Template Method | |
19 | RGO@silk-fabric | 1.48 | Microwave Reduction | |
20 | Porous carbon black/GO | 1.27 | 3D Printing |
1 |
Shannon M. A. ; Bohn P. W. ; Elimelech M. ; Elimelech M. ; Georgiadis J. G. ; Marinas B. J. ; Mayes A. M. Nature 2008, 452, 301.
doi: 10.1038/nature06599 |
2 |
Vörösmarty C. J. ; Green P. ; Salisbury J. ; Lammers R. B. Science 2000, 289, 284.
doi: 10.1126/science.289.5477.284 |
3 |
Vorosmarty C. J. ; McIntyre P. B. ; Gessner M. O. ; Dudgeon D. ; Prusevich A. ; Green P. ; Glidden S. ; Bunn S. E. ; Sullivan C. A. ; Liermann C. R. ; et al Nature 2010, 467, 555.
doi: 10.1038/nature09440 |
4 | WHO. Progress on Drinking Water and Sanitation. World Health Organization, Geneva, Switzerland, 2014. |
5 |
Kumar A. ; Kumar K. ; Kaushik N. ; Sharma S. ; Mishra S. Renew. Sustain Energy Rev. 2010, 14, 2434.
doi: 10.1016/j.rser.2010.04.003 |
6 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
7 |
Kalogirou S. V. ; Tikekar A. N. Sol. Energy 2009, 83, 6.
doi: 10.1016/j.solener.2008.05.017 |
8 | Lewis, N. S. Science 2016, 351, aad1920. doi: 10.1126/science.aad1920 |
9 |
Lewis N. S. Science 2007, 315, 798.
doi: 10.1126/science.1137014 |
10 |
Jeon N. J. ; Noh J. H. ; Yang W. S. ; Kim Y. C. ; Ryu S. C. ; Seo J. W. ; Seok S. I. Nature 2015, 517, 476.
doi: 10.1038/nature14133 |
11 |
Yoshikawa K. ; Kawasaki H. ; Yoshida W. ; Irie T. ; Konsishi K. ; Nakano K. ; Uto T. ; Adachi D. ; Kanematsu M. ; Uzu H. ; et al Nat. Energy 2017, 2, 17032.
doi: 10.1038/nenergy.2017.32 |
12 |
Liu X. Q. ; Iocozzia J. ; Wang Y. ; Cui X. ; Chen Y. H. ; Zhao S. Q. ; Li Z. ; Lin Z. Q. Energy Environ. Sci. 2017, 10, 402.
doi: 10.1039/C6EE02265K |
13 |
Zhao M. ; Chen P. Nano Lett. 2020, 20, 2939.
doi: 10.1021/acs.nanolett.0c01308 |
14 |
Hu C. G. ; Chen X. Y. ; Dai Q. B. ; Wang M. ; Qu L. T. ; Dai L. M. Nano Energy 2017, 41, 367.
doi: 10.1016/j.nanoen.2017.09.029 |
15 |
Guo A. K. ; Ming X. ; Fu Y. ; Wang G. ; Wang X. B. ACS Appl. Mater. Interfaces 2017, 9, 29958.
doi: 10.1021/acsami.7b07759 |
16 |
Yang J. L. ; Pang Y. S. ; Huang W. X. ; Shaw S. K. ; Schiffbauer J. ; Pillers M. A. ; Mu X. ; Luo S. R. ; Zhang T. ; Luo T. F. ; et al ACS Nano 2017, 11, 5510.
doi: 10.1021/acsnano.7b00367 |
17 |
Hong Z. X. ; Pei J. X. ; Wang Y. P. ; Cao B. ; Mao M. R. ; Liu H. D. ; Jiang H. F. ; An Q. S. ; Liu X. ; Hu X. J. Energy Convers. Manag. 2019, 199, 112019.
doi: 10.1016/j.enconman.2019.112019 |
18 |
Meng Y. N. ; Zhao Y. ; Hu C. G. ; Cheng H. H. ; Hu Y. ; Zhang Z. P. ; Shi G. Q. ; Qu L. T. Adv. Mater. 2013, 25, 2326.
doi: 10.1002/adma.201300132 |
19 |
Wang Y. ; Wang L. ; Yang T. T. ; Li X. ; Zang X. B. ; Zhu M. ; Wang K. L. ; Wu D. H. ; Zhu H. W. Adv. Funct. Mater. 2014, 24, 4666.
doi: 10.1002/adfm.201400379 |
20 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Katsnelson M. I. ; Grigorieva I. V. ; Dubonos S. V. ; Firsov A. A. Nature 2005, 438, 197.
doi: 10.1038/nature04233 |
21 |
Li D. ; Kaner R. B. Science 2008, 320, 1170.
doi: 10.1126/science.1158180 |
22 |
Geim A. K. Science 2009, 324, 1530.
doi: 10.1126/science.1158877 |
23 |
Reina G. ; González-Domínguez J. M. ; Criado A. ; Vázquez E. ; Bianco A. ; Prato M. Chem. Soc. Rev. 2017, 46, 4400.
doi: 10.1039/C7CS00363C |
24 |
Joshi R. K. ; Carbone P. ; Wang F. C. ; Kravets V. G. ; Su Y. ; Grigorieva I. V. ; Wu H. A. ; Geim A. K. ; Nair R. R. Science 2014, 343, 752.
doi: 10.1126/science.1245711 |
25 | Han S. Y. ; Sun J. ; He S. B. ; Tang M. L. ; Chai R. J. Am. J. Transl. Res. 2019, 6, 3246. |
26 |
Krishnan S. K. ; Singh E. ; Singh P. ; Meyyappan M. ; Nalwa H. S. RSC Adv. 2019, 9, 8778.
doi: 10.1039/C8RA09577A |
27 |
Liu H. ; Qiu H. Chem. Eng. J. 2020, 393, 124691.
doi: 10.1016/j.cej.2020.124691 |
28 |
Wang H. T. ; Mi X. Y. ; Li Y. ; Zhan S. H. Adv. Mater. 2019, 32, 1806843.
doi: 10.1002/adma.201806843 |
29 |
Chang H. X. ; Wu H. K. Energy Environ. Sci. 2013, 6, 3483.
doi: 10.1039/C3EE42518E |
30 |
Qiu B. C. ; Xing M. Y. ; Zhang J. L. Chem. Soc. Rev. 2018, 47, 2165.
doi: 10.1039/C7CS00904F |
31 |
Zhang P. P. ; Liao Q. H. ; Yao H. Z. ; Huang Y. X. ; Cheng H. H. ; Qu L. T. Energy Storage Mater. 2019, 18, 429.
doi: 10.1016/j.ensm.2018.10.006 |
32 |
Xu X. ; Guan C. ; Xu L. ; Tan H.Y. ; Zhang D. W. ; Wang Y. Q. ; Zhang H. ; Blackwood D. J. ; Wang J. ; Ding J. ; et al ACS Nano 2020, 14, 937.
doi: 10.1021/acsnano.9b08191 |
33 |
Ding T. P. ; Zhou Y. ; Ong W. L. ; Ho G. W. Mater. Today 2021, 41, 178.
doi: 10.1016/j.mattod.2020.10.022 |
34 |
Mao J. J. ; Iocozzia J. ; Huang J. Y. ; Meng K. ; Lai Y. K. ; Lin Z. Q. Energy Environ. Sci 2018, 11, 772.
doi: 10.1039/C7EE03031B |
35 |
Hensleigh R. M. ; Cui H. C. ; Oakdale J. S. ; Ye J. C. ; Campbell P. G. ; Duoss E. B. ; Spadaccini C. M. ; Zheng X. Y. ; Worsley M. A. Mater. Horiz. 2018, 5, 1035.
doi: 10.1039/C8MH00668G |
36 |
Zhang H. F. ; Zhang J. B. ; Liu K. H. ; Zhu Y. Q. ; Qiu X. Y. ; Sun D. M. ; Tang Y. W. Green Energy Environ. 2019, 4, 245.
doi: 10.1016/j.gee.2018.12.002 |
37 | Gao S. H. ; Yang Y. ; Wu J. L. ; Qin L. X. ; Kang S. Z. ; Li X. Q. Chin. J. Appl. Chem. 2020, 37, 923. |
郜思衡; 杨宇; 毋金玲; 秦利霞; 康诗钊; 李向清. 应用化学, 2020, 37, 923.
doi: 10.11944/j.issn.1000-0518.2020.08.200034 |
|
38 |
Wang R. ; Hao Y. F. ; Wang Z. Q. ; Gong H. ; Thong J. T. L. Nano Lett. 2010, 10, 4844.
doi: 10.1021/nl102445x |
39 |
Li Y. Z. ; Yan K. ; Lee H. W. ; Lu Z. D. ; Liu N. L. ; Cui Y. Nat. Energy 2016, 1, 16017.
doi: 10.1038/nenergy.2016.17 |
40 |
Zhou G. M. ; Sun J. ; Jin Y. ; Chen W. ; Zu C. X. ; Zhang R. F. ; Qiu Y. C. ; Zhao J. ; Zhuo D. ; Cui Y. ; et al Adv. Mater. 2017, 29, 1603366.
doi: 10.1002/adma.201603366 |
41 |
Xu Y. X. ; Sheng K. X. ; Li C. ; Shi G. Q. ACS Nano 2012, 4, 4324.
doi: 10.1021/nn101187z |
42 |
Zhao Y. ; Hu C. G. ; Hu Y. ; Cheng H. H. ; Shi G. Q. ; Qu L. T. Angew. Chem. 2012, 124, 11533.
doi: 10.1002/ange.201206554 |
43 |
Cong H. P. ; Ren X. C. ; Wang P. ; Yu S. H. ACS Nano 2012, 6, 3.
doi: 10.1021/nn300082k |
44 |
Hu C. G. ; Zhai X. Q. ; Liu L. L. ; Zhao Y. ; Jiang L. ; Qu L. T. Sci. Rep. 2013, 3, 2065.
doi: 10.1038/srep02065 |
45 | Zhao, K.; Zhang, T. F.; Chang, H. C.; Yang, Y.; Xiao, P. S.; Zhang, H. T.; Li, C. X.; Tiwary, C. S.; Ajayan, P. M.; Chen, Y. S. Sci. Adv. 2019, 5, eaav2589. doi: 10.1126/sciadv.aav2589 |
46 |
Varghese D. ; Bento J. L. ; Ward S. P. ; Adamson D. H. ACS Appl. Mater. Interfaces 2020, 12, 29692.
doi: 10.1021/acsami.0c05831 |
47 | Hou Z. X. ; Bo D. M. ; Li J. J. ; Li W. J. Synth. Cryst. 2019, 48, 652. |
候朝霞; 薄大明; 李伟; 李建君. 人工晶体学报, 2019, 48, 652.
doi: 10.16553/j.cnki.issn1000-985x.2019.04.015 |
|
48 |
Zeng Z. Y. ; Huang X. ; Yin Z. Y. ; Li H. ; Chen Y. ; Li H. ; Zhang Q. ; Ma J. ; Boey F. ; Zhang H. Adv. Mater. 2012, 24, 4138.
doi: 10.1002/adma.201104281 |
49 |
Kim K. ; Lee T. ; Kwon Y. Nature 2016, 535, 131.
doi: 10.1038/nature18284 |
50 |
Zheng Z. ; Zheng X. H. ; Wang H. T. ; Du Q. G. ACS Appl. Mater. Interfaces 2013, 5, 7974.
doi: 10.1021/am4020549 |
51 |
Huang X. D. ; Zhao Y. F. ; Ao Z. M. ; Wang G. X. Sci. Rep. 2014, 4, 7557.
doi: 10.1038/srep07557 |
52 |
Yan J. ; Ding Y. ; Hu C. G. ; Cheng H. H. ; Chen N. ; Feng Z. H. ; Zhang Z. P. ; Qu L. T. J. Mater. Chem. A 2014, 2, 16786.
doi: 10.1039/C4TA03057E |
53 |
Sun H. Y. ; Xu Z. ; Gao C. Adv. Mater. 2013, 25, 2554.
doi: 10.1002/adma.201204576 |
54 |
Liu H. H. ; Zhang H. L. ; Xu H. B. ; Lou T. P. ; Sui Z. T. ; Zhang Y. Nanoscale 2018, 10, 5246.
doi: 10.1039/C7NR08985F |
55 |
Chen Z. P. ; Ren W. C. ; Cao L. B. ; Liu B. L. ; Pei S. F. ; Cheng H. M. Nat. Mater. 2011, 10, 424.
doi: 10.1038/NMAT3001 |
56 |
Shi L. R. ; Chen K. ; Du R. ; Bachmatiuk A. ; Rummeli M. H. ; Xie K. W. ; Huang Y. Y. ; Zhang Y. F. ; Liu Z. F. J. Am. Chem. Soc 2016, 138, 6360.
doi: 10.1021/jacs.6b02262 |
57 | Wang, K. X.; Shi, L. R.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112. |
王可心, 史刘嵘, 王铭展, 杨皓, 刘忠范, 彭海琳. 物理化学学报, 2019, 35, 1112. doi: 10.3866/PKU.WHXB201805032. | |
58 |
Huang M. ; Wang C. H. ; Quan L. ; Nguyen T. H. Y. ; Zhang H. Y. ; Jiang Y. ; Byun G. ; Ruoff R. S. Matter 2020, 3, 487.
doi: 10.1016/j.matt.2020.06.012 |
59 |
Zang X. N. ; Jiang Y. Q. ; Sanghadasa M. ; Lin L. W. Sensor Actuat. A-Phys. 2020, 304, 111886.
doi: 10.1016/j.sna.2020.111886 |
60 |
Wang X. ; Jiang M. ; Zhou Z. ; Gou J. ; Hui D. Compos. B: Eng. 2017, 110, 442.
doi: 10.1016/j.compositesb.2016.11.034 |
61 |
Bassoli E. ; Gatto A. ; Iuliano L. ; Violante M. G. Rapid Prototyp. J. 2007, 13, 30.
doi: 10.1108/13552540710750898 |
62 |
Ponnamma D. ; Yin Y. F. ; Salim N. ; Parameswaranpillai J. ; Thomas S. ; Hameed N. Compos. B: Eng. 2021, 204, 108493.
doi: 10.1016/j.compositesb.2020.108493 |
63 |
Kim J. H. ; Chang W. S. ; Kim D. ; Yang J. R. ; Han J. T. ; Lee G. W. ; Kim J. T. ; Seol S. K. Adv. Mater. 2015, 27, 157.
doi: 10.1002/adma.201404380 |
64 |
Wei X. J. ; Li D. ; Jiang W. ; Gu Z. M. ; Wang X. J. ; Zhang Z. X. ; Sun Z. Z. Sci. Rep. 2015, 5, 11181.
doi: 10.1038/srep11181 |
65 |
Dua V. ; Surwade S. P. ; Manohar S. K. Angew. Chem. Int. Ed. 2010, 49, 2154.
doi: 10.1002/anie.200905089 |
66 |
Zhong J. ; Zhou G. X. ; He P. G. ; Yang Z. H. ; Jia D. C. Carbon 2017, 117, 421.
doi: 10.1016/j.carbon.2017.02.102 |
67 |
Yan Z. Q. ; Yao W. L. ; Hu L. ; Liu D. D. ; Wang C. D. ; Lee C. S. Nanoscale 2015, 7, 5563.
doi: 10.1039/C5NR00030K |
68 |
Yang H. S. ; Zhang T. P. ; Jiang M. ; Duan Y. X. ; Zhang J. M. J. Mater. Chem. A 2015, 3, 19268.
doi: 10.1039/C5TA06452J |
69 |
Ding C. H. ; Zhao Y. J. ; Yan D. ; Zhao Y. Z. ; Zhou H. B. ; Li J. B. ; Jin H. B. Electrochim. Acta 2016, 221, 124.
doi: 10.1016/j.electacta.2016.10.054 |
70 |
Zhang P. P. ; Li J. ; Lv L. X. ; Zhao Y. ; Qu L. T. ACS Nano 2017, 11 (5), 5087.
doi: 10.1021/acsnano.7b01965 |
71 |
Antonelli D. M. ; Jackie Y. Y. Angw. Chem. Int. Ed. 1995, 34, 2014.
doi: 10.1002/anie.199520141 |
72 |
Tang G. Q. ; Jiang Z. G. ; Li X. F. ; Zhang H. B. ; Dasari A. ; Yu Z. Z. Carbon 2014, 77, 592.
doi: 10.1016/j.carbon.2014.05.063 |
73 |
Xu X. ; Zhang Q. Q. ; Yu Y. K. ; Chen W. L. ; Hu H. ; Li H. Adv. Mater. 2016, 28, 9223.
doi: 10.1002/adma.201603079 |
74 |
Zhao X. L. ; Yao W. Q. ; Gao W. W. ; Chen H. ; Gao C. Adv. Mater. 2017, 29, 1701482.
doi: 10.1002/adma.201701482 |
75 |
Yang H. S. ; Li Z. L. ; Lu B. ; Gao J. ; Jin X. T. ; Sun G. Q. ; Zhang G. F. ; Zhang P. P. ; Qu L. T. ACS Nano 2018, 12, 11407.
doi: 10.1021/acsnano.8b06380 |
76 |
Xu J. Z. ; Sui J. ; Li B. Y. ; Yang M. L. Energy 2010, 35, 4361.
doi: 10.1016/j.energy.2009.03.019 |
77 |
Zhang Z. H. ; Li X. M. ; Yin J. ; Fei W. W. ; Xue M. M. ; Wang Q. ; Zhou J. X. ; Guo W. L. Nat. Nanotechnol. 2018, 13, 1109.
doi: 10.1038/s41565-018-0228-6 |
78 |
Ito Y. ; Tanabe Y. ; Han J. H. ; Fujita T. ; Tanigaki K. ; Chen M. W. Adv. Mater. 2015, 27, 4302.
doi: 10.1002/adma.201501832 |
79 |
Yang Y. ; Zhao R. Q. ; Zhang T. F. ; Zhao K. ; Xiao P. S. ; Ma Y. F. ; Ajayan P. M. ; Shi G. Q. ; Chen Y. S. ACS Nano 2018, 12, 829.
doi: 10.1021/acsnano.7b08196 |
80 |
Ren H. Y. ; Tang M. ; Guan B. L. ; Wang K. X. ; Yang J. W. ; Wang F. F. ; Wang M. Z. ; Shan J. Y. ; Chen Z. L. ; Liu Z. F. Adv. Mater. 2017, 29, 1702590.
doi: 10.1002/adma.201702590 |
81 |
Liang H. X. ; Liao Q. H. ; Chen N. ; Liang Y. ; Lv G. Q. ; Zhang P. P. ; Lu B. ; Qu L. T. Angew. Chem. Int. Ed. 2019, 58, 19041.
doi: 10.1002/anie.201911457 |
82 |
Zhang P. P. ; Liao Q. H. ; Zhang T. ; Cheng H. H. ; Huang Y. X. ; Yang C. ; Li C. ; Jiang L. ; Qu L. T. Nano Energy 2018, 46, 415.
doi: 10.1016/j.nanoen.2018.02.018 |
83 |
Zhang P. P. ; Liao Q. H. ; Yao H. Z. ; Cheng H. H. ; Huang Y. X. ; Yang C. ; Jiang L. ; Qu L. T. J. Mater. Chem. A 2018, 6, 15303.
doi: 10.1039/c8ta05412f |
84 |
Cui L. F. ; Zhang P. P. ; Xiao Y. K. ; Liang Y. ; Liang H. X. ; Cheng Z. H. ; Qu L. T. Adv. Mater. 2018, 30, 1706805.
doi: 10.1002/adma.201706805 |
85 |
Wang Z. Y. ; Liu H. W. ; Chen F. J. ; Zhang Q. Q. J. Mater. Chem. A 2020, 8, 19387.
doi: 10.1039/d0ta06797k |
86 | Yu Z. Q. ; Qu J. Y. ; Li J. L. ; Zang Y. H. ; Gu J. F. ; Gao F. Chin. J. Appl. Chem. 2020, 37, 1164. |
于志强; 曲江英; 李杰兰; 臧云浩; 顾建峰; 高峰. 应用化学, 2020, 37, 1164.
doi: 10.11944/j.Issn.1000-0518.2020.10.200087 |
|
87 |
Huo B. B. ; Jiang D. G. ; Cao X. Y. ; Liang H. ; Liu Z. ; Li C. W. ; Liu J. Q. Carbon 2019, 142, 13.
doi: 10.1016/j.carbon.2018.10.008 |
88 |
Wang X. Q. ; Qu G. ; Wang N. ; Wu H. ACS Appl. Mater. Interfaces 2016, 8, 9194.
doi: 10.1021/acsami.6b02071 |
89 |
Feng X. M. ; Zhao J. L. ; Sun D. W. ; Shanmugam L. ; Kim J. K. ; Yang J. L. J. Mater. Chem. A 2019, 7, 4400.
doi: 10.1039/c8ta09062a |
90 |
Zhang Z. ; Mu P. ; Han J. X. ; He J. X. ; Zhu Z. Q. ; Sun H. X. ; Liang W. D. ; Li A. J. Mater. Chem. A 2019, 7, 18092.
doi: 10.1039/c9ta04509k |
91 |
Zhou X. Y. ; Zhao F. ; Yu G. H. ; Zhang Y. ; Yu G. H. Energy Environ. Sci. 2018, 11, 1985.
doi: 10.1039/C8EE00567B |
92 |
Meng S. ; Zhao X. ; Tang C. Y. ; Yu P. ; Bao R. Y. ; Liu Z. Y. ; Yang M. B. ; Yang W. J. Mater. Chem. A 2020, 8, 2701.
doi: 10.1039/c9ta12802f |
93 |
Wang G. ; Fu Y. ; Ma X. F. ; Pi W. B. ; Liu D. W. ; Wang X. B. Carbon 2017, 114, 117.
doi: 10.1016/j.carbon.2016.11.071 |
94 |
Wang G. ; Fu Y. ; Guo A. K. ; Mei T. ; Wang J. Y. ; Li J. H. ; Wang X. B. Chem. Mater. 2017, 29, 5629.
doi: 10.1021/acs.chemmater.7b01280 |
95 |
Li Y. J. ; Gao T. T. ; Yang Z. ; Chen C. J. ; Luo W. ; Song J. W. ; Hitz E. ; Jia C. ; Zhou Y. B. ; Hu L. B. ; et al Adv. Mater. 2017, 29, 1700981.
doi: 10.1002/adma.201700981 |
96 |
Yao H. Z. ; Zhang P. P. ; Huang Y. X. ; Cheng H. H. ; Qu L. T. Adv. Mater. 2020, 32, 1925875.
doi: 10.1002/adma.201905875 |
97 |
Li Y. J. ; Gao T. T. ; Yang Z. ; Chen C. J. ; Kuang Y. D. ; Song J. W. ; Jia C. ; Hitz E. ; Yang B. ; Hu L. B. Nano Energy 2017, 41, 201.
doi: 10.1016/j.nanoen.2017.09.034 |
98 |
Hu X. Z. ; Xu W. C. ; Zhou L. ; Tan Y. L. ; Wang Y. ; Zhu S. N. ; Zhu J. Adv. Mater. 2017, 29, 1604031.
doi: 10.1002/adma.201604031 |
99 |
Liu K. K. ; Jiang Q. S. ; Tadepalli S. ; Raliya R. ; Biswas P. ; Naik R. R. ; Singamaneni S. ACS Appl. Mater. Interfaces 2017, 9, 7675.
doi: 10.1021/acsami.7b01307 |
100 |
Huang L. B. ; Ling L. ; Su J. J. ; Song Y. ; Wang Z. Y. ; Tang B. Z. ; Westerhoff P. ; Ye R. Q. ACS Appl. Mater. Interfaces 2020, 12, 51864.
doi: 10.1021/acsami.0c16596 |
101 |
Zhang Q. ; Xiao X. F. ; Wang G. ; Ming X. ; Liu X. H. ; Wang H. ; Yang H. J. ; Xu W. L. ; Wang X. B. J. Mater. Chem. A 2018, 6, 17212.
doi: 10.1039/c8ta05193c |
102 |
Zhang Q. ; Yang H. J. ; Xiao X. F. ; Wang H. ; Yan L. ; Shi Z. X. ; Chen Y. L. ; Xu W. L. ; Wang X. B. J. Mater. Chem. A 2019, 7, 14620.
doi: 10.1039/c9ta03045j |
103 | Xiong H. ; Xie X. W. ; Wang M. ; Hou Y. Q. ; Hou X. Acta Phys. -Chim. Sin. 2020, 36 (9), 1912008. |
熊辉; 谢歆雯; 王苗; 侯雅琦; 侯旭. 物理化学学报, 2020, 36 (9), 1912008.
doi: 10.3866/PKU.WHXB201912008 |
|
104 |
Chen T. J. ; Wang S. ; Wu Z. Z. ; Wang X. D. ; Peng J. ; Wu B. H. ; Cui J. Q. ; Fang X. L. ; Xie Y. Q. ; Zheng N. F. J. Mater. Chem. A 2018, 6, 14571.
doi: 10.1039/c8ta04420a |
105 |
Wu X. ; Gao T. ; Han C. H. ; Xu J. S. ; Owens G. ; Xu H. L. Sci. Bull. 2019, 64, 1625.
doi: 10.1016/j.scib.2019.08.022 |
106 |
Li X. Q. ; Lin R. X. ; Ni G. ; Xu N. ; Hu X. Z. ; Zhu B. ; Lv G. G. ; Li J. L. ; Zhu S. N. ; Zhu J. Nat. Sci. Rev. 2018, 5, 70.
doi: 10.1093/nsr/nwx051 |
107 |
Ming X. ; Guo A. K. ; Zhang Q. ; Guo Z. Z. ; Yu F. ; Hou B. F. ; Wang Y. ; Homewood K. P. ; Wang X. B. Carbon 2020, 167, 285.
doi: 10.1016/j.carbon.2020.06.023 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[5] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[6] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[7] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[8] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[9] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[12] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[13] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[14] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[15] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
|