Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (12): 2201050.doi: 10.3866/PKU.WHXB202201050
Special Issue: Special Issue in Honor of the 120’s Anniversary of Academician Ying Fu
• ARTICLE • Previous Articles Next Articles
Yan Yang1, Bowen He1, Hualong Ma1, Sen Yang2, Zhouhong Ren1, Tian Qin1, Fagui Lu1, Liwen Ren2, Yixiao Zhang1, Tianfu Wang2,*(), Xi Liu1,*(), Liwei Chen1,*()
Received:
2022-01-29
Accepted:
2022-03-15
Published:
2022-03-21
Contact:
Tianfu Wang,Xi Liu,Liwei Chen
E-mail:tfwang@sjtu.edu.cn;liuxi@sjtu.edu.cn;lwchen2018@sjtu.edu.cn
About author:
Email: lwchen2018@sjtu.edu.cn (L.C.)Supported by:
Yan Yang, Bowen He, Hualong Ma, Sen Yang, Zhouhong Ren, Tian Qin, Fagui Lu, Liwen Ren, Yixiao Zhang, Tianfu Wang, Xi Liu, Liwei Chen. PtRuAgCoNi High-Entropy Alloy Nanoparticles for High-Efficiency Electrocatalytic Oxidation of 5-Hydroxymethylfurfural[J]. Acta Phys. -Chim. Sin. 2022, 38(12), 2201050. doi: 10.3866/PKU.WHXB202201050
"
Current density [mA?cm?2] at 1.4 V vs. RHE (no HMF) | Current density [mA?cm?2] at 1.4 V vs. RHE (50 HMF) | Potential [V vs. RHE] at 1 mA?cm?2 (no HMF) | Potential [V vs. RHE] at 1 mA?cm?2 (50 HMF) | |
PtRuAgCoNi-OAm/C-185 | 0.82 | 3.79 | 1.43 | 1.06 |
PtRuAgCoNi-OAm/C-300 | 0.68 | 2.40 | 1.48 | 1.09 |
PtRuAgCoNi-OAm/C | 0.39 | 1.48 | 1.57 | 1.20 |
PtRuAgCoNi-PVP/C | 0.35 | 1.31 | 1.59 | 1.27 |
Pt/C | 0.20 | 0.29 | 1.69 | 1.64 |
1 |
Battula V. R. ; Jaryal A. ; Kailasam K. K. J. Mater. Chem. A 2019, 7, 5643.
doi: 10.1039/C8TA10926E |
2 |
Akhade S. A. ; Singh N. ; Gutiérrez O. Y. ; Lopez-Ruiz J. ; Wang H. ; Holladay J. D. ; Liu Y. ; Karkamkar A. ; Weber R. S. ; Padmaperuma A. B. ; et al Chem. Rev. 2020, 120, 11370.
doi: 10.1021/acs.chemrev.0c00158 |
3 |
Banerjee A. ; Dick G. R. ; Yoshino T. ; Kanan M. W. Nature 2016, 531, 215.
doi: 10.1038/nature17185 |
4 |
Eerhart A. J. J. E. ; Faaij A. P. C. ; Patel M. K. Energy Environ. Sci. 2012, 5, 6407.
doi: 10.1039/c2ee02480b |
5 |
Hou Q. ; Qi X. ; Zhen M. ; Qian H. ; Nie Y. ; Bai C. ; Zhang S. ; Bai X. ; Ju M. Green Chem. 2021, 23, 119.
doi: 10.1039/d0gc02770g |
6 |
Yang Y. ; Mu T. Green Chem. 2021, 23, 4228.
doi: 10.1039/D1GC00914A |
7 |
You B. ; Liu X. ; Jiang N. ; Sun Y. J. Am. Chem. Soc. 2016, 138, 13639.
doi: 10.1021/jacs.6b07127 |
8 |
Jiang N. ; You B. ; Boonstra R. ; Rodriguez I. M. ; Sun Y. ACS Energy Lett. 2016, 1, 386.
doi: 10.1021/acsenergylett.6b00214 |
9 |
You B. ; Jiang N. ; Liu X. ; Sun Y. Angew. Chem. Int. Ed. 2016, 55, 9913.
doi: 10.1002/ange.201603798 |
10 |
Li S. ; Sun X. ; Yao Z. ; Zhong X. ; Cao Y. ; Liang Y. ; Wei Z. ; Deng S. ; Zhuang G. ; Li X. ; Wang J. Adv. Funct. Mater. 2019, 29, 1904780.
doi: 10.1002/adfm.201904780 |
11 |
Davis S. E. ; Houk L. R. ; Tamargoa E. C. ; Datye A. K. ; Davis R. J. Catal. Today 2011, 160, 55.
doi: 10.1016/j.cattod.2010.06.004 |
12 |
Vuyyuru K. ; Strasser P. Catal. Today 2012, 195, 144.
doi: 10.1016/j.cattod.2012.05.008 |
13 |
Yeh J. W. ; Chen S. K. ; Lin S. J. ; Gan J. Y. ; Chin T. S. ; Shun T. T. ; Tsau C. H. ; Chang S. Y. Adv. Eng. Mater. 2004, 6, 299.
doi: 10.1002/adem.200300567 |
14 | Zhao K. N. ; Li X. ; Su D. Acta Phys. -Chim. Sin. 2021, 37, 2009077. |
赵康宁; 李潇; 苏东; 物理化学学报, 2021, 37, 2009077.
doi: 10.3866/PKU.WHXB202009077 |
|
15 |
Zhang G. ; Ming K. ; Kang J. ; Huang Q. ; Zhang Z. ; Zheng X. ; Bi X. Electrochim. Acta 2018, 279, 19.
doi: 10.1016/j.electacta.2018.05.035 |
16 |
Qiu H. J. ; Fang G. ; Gao J. ; Wen Y. ; Lv J. ; Li H. ; Xie G. ; Liu X. ; Sun S. ACS Mater. Lett. 2019, 1, 526.
doi: 10.1021/acsmaterialslett.9b00414 |
17 |
Yao Y. ; Huang Z. ; Li T. ; Wang H. ; Liu Y. ; Stein H. S. ; Mao Y. ; Gao J. ; Jiao M. ; Dong Q. ; et al Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 6316.
doi: 10.1073/pnas.1903721117 |
18 |
Yang Y. ; Song B. ; Ke X. ; Xu F. ; Bozhilov K. N. ; Hu L. ; Shahbazian-Yassar R. ; Zachariah M. R. Langmuir 2020, 36, 1985.
doi: 10.1021/acs.langmuir.9b03392 |
19 |
Lu L. ; Zou S. ; Fang B. ACS Catal. 2021, 11, 6020.
doi: 10.1021/acscatal.1c00903 |
20 |
Wanjala B. N. ; Loukrakpam R. ; Luo J. ; Njoki P. N. ; Mott D. ; Zhong C. J. ; Shao M. ; Protsailo L. ; Kawamura T. J. Phys. Chem. C 2010, 114, 17580.
doi: 10.1021/jp106843k |
21 |
Li D. ; Wang C. ; Tripkovic D. ; Sun S. ; Markovic N. M. ; Stamenkovic V. R. ACS Catal. 2012, 2, 1358.
doi: 10.1021/cs300219j |
22 |
Zhong R. Y. ; Yang J. W. ; Hu Z. ; Xu B. Q. ACS Appl. Nano Mater. 2019, 2, 5720.
doi: 10.1021/acsanm.9b01197 |
23 |
Niu Z. ; Li Y. Chem. Mater. 2014, 26, 72.
doi: 10.1021/cm4022479 |
24 |
Lu F. ; Zhou S. ; Li S. ; Jiang H. ; He B. ; Qi J. ; Zhang Y. ; Liu X. ; Xu J. ; Li Y. ; Liu X. ; Chen L. J. Phys. Chem. C 2021, 125, 23205.
doi: 10.1021/acs.jpcc.1c07437 |
25 |
Bondesgaard M. ; Broge N. L. N. ; Mamakhel A. ; Bremholm M. ; Iversen B. B. Adv. Funct. Mater. 2019, 29, 1905933.
doi: 10.1002/adfm.201905933 |
26 |
Cai Z. X. ; Goou H. ; Ito Y. ; Tokunaga T. ; Miyauchi M. ; Abe H. ; Fujita T. Chem. Sci. 2021, 12, 11306.
doi: 10.1039/D1SC01981C |
27 |
Shyu J. Z. ; Otto K. Appl. Surf. Sci. 1988, 32, 246.
doi: 10.1016/0169-4332(88)90085-2 |
28 |
Wang A. Q. ; Liu J. H. ; Lin S. D. ; Lin T. S. ; Mou C. Y. J. Catal. 2005, 233, 186.
doi: 10.1016/j.jcat.2005.04.028 |
29 | Xu S. K. ; Li L. M. ; Guo N. N. ; Su Y. L. ; Zhang P. Acta Phys. -Chim. Sin. 2012, 28, 177. |
徐三魁; 李利民; 郭楠楠; 苏运来; 张朋; 物理化学学报, 2012, 28, 177.
doi: 10.3866/PKU.WHXB201111181 |
|
30 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36, 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨; 物理化学学报, 2020, 36, 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
31 |
Nellaiappan S. ; Katiyar N. K. ; Kumar R. ; Parui A. ; Malviya K. D. ; Pradeep K. G. ; Singh A. K. ; Sharma S. ; Tiwary C. S. ; Biswas K. ACS Catal. 2020, 10, 3658.
doi: 10.1021/acscatal.9b04302 |
32 |
Shao M. ; Odell J. H. ; Choi S. I. ; Xia Y. Electrochem. Commun. 2013, 31, 46.
doi: 10.1021/acscatal.9b04302 |
33 |
Collins G. ; Davitt F. ; O'Dwyer C. ; Holmes J. D. ACS Appl. Nano Mater. 2018, 1, 7129.
doi: 10.1021/acsanm.8b02019 |
34 |
Chen W. ; Kim J. ; Sun S. ; Chen S. Phys. Chem. Chem. Phys. 2006, 8, 2779.
doi: 10.1039/B603045A |
35 |
Weidner J. ; Barwe S. ; Sliozberg K. ; Piontek S. ; Masa J. ; Apfel U. P. ; Schuhmann W. ; Beilstein J. Org. Chem. 2018, 14, 1436.
doi: 10.3762/bjoc.14.121 |
36 |
Yan D. ; Li Y. ; Huo J. ; Chen R. ; Dai L. ; Wang S. Adv. Mater. 2017, 29, 1606459.
doi: 10.1002/adma.201606459 |
37 |
Gu K. ; Wang D. ; Xie C. ; Wang T. ; Huang G. ; Liu Y. ; Zou Y. ; Tao L. ; Wang S. Angew. Chem. Int. Ed. 2021, 133, 20415.
doi: 10.1002/ange.202107390 |
[1] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[2] | Chong Cao, Pei Zhang, Lidong Cao, Mingxin Liu, Yuying Song, Peng Chen, Qiliang Huang, Buxing Han. Experimental and Molecular Dynamic Simulation of Droplet Deposition on Superhydrophobic Plant Leaf Surfaces [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2207006-. |
[3] | Jian Yang, Chen Lei, Xiang Liu, Jian Zhang, Yudie Sun, Cheng Zhang, Mingfu Ye, Kui Zhang. Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2111030-. |
[4] | Yichen Du, Zhuangzhuang Zhang, Yifan Xu, Jianchun Bao, Xiaosi Zhou. Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205017-. |
[5] | Shaopeng Li, Jing Du, Bin Zhang, Yanzhen Liu, Qingqing Mei, Qinglei Meng, Minghua Dong, Juan Du, Zhijuan Zhao, Lirong Zheng, Buxing Han, Meiting Zhao, Huizhen Liu. Selective Hydrogenation of 5-(Hydroxymethyl)furfural to 5-Methylfurfural by Exploiting the Synergy between Steric Hindrance and Hydrogen Spillover [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2206019-. |
[6] | Jianan Teng, Guangyue Xu, Yao Fu. Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2204031-. |
[7] | Zhaobi Xing,Zhijun Guo,Yuwei Zhang,Junling Liu,Yujie Wang,Guangyue Bai. Regulation of SDS on the Surface Charge Density of SB3-12 Micelles and Its Effect on Drug Dissolution [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1906006-. |
[8] | Yimin Hu, Jie Han, Rong Guo. Wormlike Micelle to Gel Transition Induced by Brij 30 in Ionic Liquid-Type Surfactant Aqueous Solution [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1909049-. |
[9] | Yingxiong Wang, Manli Deng, Yongqiang Tang, Yuchun Han, Xu Huang, Yanbo Hou, Yilin Wang. Aggregation of Biodegradable Cationic Gemini Surfactants with Amide or Ester Groups [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1909046-. |
[10] | Lingyan GONG, Guangzhi LIAO, Quansheng CHEN, Hexin LUAN, Yujun FENG. Swollen Surfactant Micelles: Properties and Applications [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 816-828. |
[11] | Siqi LUO,Meina WANG,Weiwei ZHAO,Yilin WANG. Interactions between Surfactants and Folic Acid and the Effects of Surfactants on the Photodegradation of Folic Acid [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 766-774. |
[12] | Hengchang LIU,Yujun FENG. CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 408-414. |
[13] | Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854. |
[14] | Wen-Rong ZHAO,Jing-Cheng HAO. Vesicle Gels of Magnetic Asymmetric Surfactants [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1655-1664. |
[15] | Mao-Zhang TIAN,Fan ZHANG,Cheng MA,De-Sheng MA,Ling-Xiang JIANG,Rong-Rong XUE,Ka-Er-Dun LIU,Jian-Bin HUANG. Viscosity Reduction of Heavy Oils of Different Viscosities Based on General Cationic/Anionic Surfactant Systems [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1665-1671. |
|